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ABSTRACT

In Vitro Molecular Modification of Human Cultured and Primary Cells
Using Lance Array Nanoinjection

John W. Sessions
Department of Mechanical Engineering, BYU

Doctor of Philosophy

Fundamentally altering cellular function at a genetic level is a major area of interest in the
biologic sciences and the medical community. By engineering transfectable constructs that can
be inserted to dysfunctional cellular systems, scientists can mitigate aberrant genetic behavior to
produce proper molecular function. While viral vectors have been a mainstay in the past, there are
many limitations, particularly related to safety, that have changed the focus of genome editing to
incorporate alternative methods for gene delivery.

Lance Array Nanoinjection (LAN), a second-generation microfabricated transfection biotec-
hnology, is one of these alternative technologies. LAN works by utilizing both simultaneous elec-
trostatic interaction with molecular loads and physical lancing of hundreds of thousands of target
cell membranes. The purpose of this work is to demonstrate LAN in the context of in vitro transfec-
tion of immortalized culture cells and primary cells. As part of that exploration, three distinct areas
of investigation are considered, which include: characterizing environmental factors that impact
LAN transfection, demonstrating LAN genetic modification of immortalized HeLa 229 culture
cells using an indicator marker, and lastly, investigating the effects of LAN on human primary,
neonatal fibroblasts.

Keywords: Lance Array Nanoinjection, saline solution, lance geometry, carbon coating, transient
low temperature, injection speed, serial injection, propidium iodide, CRISPR-Cas9, primary fi-
broblast, PDGFR-β , wound healing



www.manaraa.com

ACKNOWLEDGMENTS

It is an impossible task to recognize all of the people that have been a guide for me through

this educational journey. With that said though, a proper acknowledgement of some of the key

players must be named. First and foremost, my wife, Allyson, has prominently been an endless

source of encouragement and support, making this experience one of the many made possible for

me because of her great sacrifices. Also, I give great credit to my parents, Gary and Annette, for

their support, selflessness, and teaching me the value of waiting for promptings of the Spirit and

working hard in the meantime. Additionally, I thank my wife’s parents, David and Susan, for their

example of resilence and charity in the face of challenge.

Additionally, I must also highlight my project team. Dr. Brian Jensen has been a great

source of gentle wisdom through the many projects. Dr. Sandra Hope not only added the essential

ingredients of molecular biology but also timely infusions of contagious laughter. A special thank

you also belongs to Dr. Larry Howell, Dr. Anton Bowden, and Dr. Brian Iverson for their being

a part of my committee and providing direction along the way. Also, I would also mention Dr.

Jonathan Alder for his assistance with developing CRISPR-Cas9 constructs used in experimenta-

tion.

Furthermore, I would also like to thank the National Science Foundation for facilitating this

research. This material is based upon work supported in part by the National Science Foundation

under Grant No. ECCS-1055916. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation.

Lastly and most importantly, I would like to express my gratitude to my Heavenly Father

for orchestrating this adventure. Moses wrote following a vision, ”Now... I know that man is

nothing.” (Moses 1:10) Indeed, I can say the same. God is Our Director in all things, from our

lives’ smallest details to the largest mountains in our present view.



www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction to Gene Therapy and Gene Medicine . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement/Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 LAN in the Context of Transfection Technologies . . . . . . . . . . . . . . 3
1.3.2 Previous Nanoinjection Works . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Approach/Literature Contributions . . . . . . . . . . . . . . . . . . . . . 5
1.4.1 Objective 1: Characterize environmental factors that impact molecular

load delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Objective 2: Demonstrate LAN genetic modification of immortalized HeLa

culture cells using an indicator marker . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Objective 3: Investigate the effects of LAN genetic modification of human

primary, neonatal fibroblasts . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Summary of Presented Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Saline Solution Effects on Propidium Iodide Uptake . . . . . . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Lance Array Fabrication and Injection Device . . . . . . . . . . . . . . . . 10
2.2.2 Propidium Iodide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Nanoinjection Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Testing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Flow Cytometry and Statistical Analysis . . . . . . . . . . . . . . . . . . . 15

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 PI Uptake Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Cell Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Potassium Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3 The Effect of Lance Geometry and Carbon Coating of Silicon Lances . . . 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Lance Array Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Nanoinjection Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Biologic Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Propidium Iodide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



www.manaraa.com

3.2.5 Post Testing Flow Cytometry Preparation . . . . . . . . . . . . . . . . . . 29
3.2.6 Flow Cytometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.7 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Lance Geometry Experimentation . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Lance Coating Experimentation . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 4 Transient Low Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Nanoinjection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Cell Membrane in Response to Transient Low Temperature . . . . . . . . . 40
4.1.3 Cell Membrane Stiffening at Low Temperature . . . . . . . . . . . . . . . 40
4.1.4 Diminished Cytoskeleton at Low Temperature . . . . . . . . . . . . . . . 40

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 Lance Array Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Injection Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Propidium Iodide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Testing Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.5 Post Testing Flow Cytometry Preparation . . . . . . . . . . . . . . . . . . 47
4.2.6 Flow Cytometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.7 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Normalized PI Uptake . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Normalized Cell Viability . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.3 Temperature and Pulsed Voltage Contrasts . . . . . . . . . . . . . . . . . . 53
4.3.4 Surface Defect Healing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.5 Temperature-Dependent Ion Re-Balancing . . . . . . . . . . . . . . . . . 55
4.3.6 Minor PI Uptake Rebound . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.7 Cell Survival with Large Surface Defect . . . . . . . . . . . . . . . . . . . 56

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 5 Injection Speed and Serial Injection . . . . . . . . . . . . . . . . . . . . . 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 General Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Lance Array Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Injection Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.3 Electrical Control Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Methods: Speed of Injection Experimentation . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Stepper Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Cell Culture Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.3 Treatment Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.4 Post-Treatment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.5 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Results and Discussion: Speed of Injection Experimentation . . . . . . . . . . . . 65

v



www.manaraa.com

5.5 Methods: Serial Injection Experimentation . . . . . . . . . . . . . . . . . . . . . . 67
5.5.1 Cell Culture Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.2 Propidium Iodide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.3 Treatment Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5.4 Post Testing Flow Cytometry Preparation . . . . . . . . . . . . . . . . . . 69
5.5.5 Flow Cytometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5.6 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Results and Discussion: Serial Injection Experimentation . . . . . . . . . . . . . . 70
5.7 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 6 CRISPR-Cas9 Directed Knock-Out of Constitutively Expressed GFP in
HeLa Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 GFP+/FRT HeLa Cell Line . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.2 CRISPR Plasmid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.3 Injection Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.4 Silicon-Etched Lance, Orthoplanar Spring and Mount . . . . . . . . . . . . 81
6.2.5 Cell Culture Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.6 Stepper Motor and Threaded Screw . . . . . . . . . . . . . . . . . . . . . 82
6.2.7 Electrical Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.8 Testing Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.9 Post Testing Flow Cytometry Preparation . . . . . . . . . . . . . . . . . . 83
6.2.10 Flow Cytometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.11 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.1 Multiple LAN injections are more effective at GFP Knock-Out . . . . . . . 85
6.3.2 Mid-range current control most effective at GFP Knock-Out . . . . . . . . 87

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 7 Chronic Wound Healing and Gene Medicine . . . . . . . . . . . . . . . . . 93
7.1 General Chronic Wounds Overview . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Wound Closure Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.1 Viral Transduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.2 Non-Viral Transfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.3 Emerging Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 8 CRISPR-Cas9 Transcriptional Up-Regulation of PDGFR-β in Primary
Neonatal Fibroblasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2.1 Lance Array Nanoinjection Device . . . . . . . . . . . . . . . . . . . . . . 113
8.2.2 Lance Array Nanoinjection Process . . . . . . . . . . . . . . . . . . . . . 114

vi



www.manaraa.com

8.2.3 Biologic Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2.4 Flow Cytometry Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2.5 Flow Cytometry and Statistical Analysis . . . . . . . . . . . . . . . . . . . 118

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.1 Electro-Mechanical Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.2 CRISPR-Cas9 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.4.1 Electro-Mechanical Stimulation . . . . . . . . . . . . . . . . . . . . . . . 122
8.4.2 CRISPR-Cas9 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 9 Summary of Findings and Potential Future Work . . . . . . . . . . . . . . 126
9.1 Key Findings Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.2 Research Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix A Materials and Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.1 Calcium Phosphate Transfection Protocol . . . . . . . . . . . . . . . . . . . . . . 154

A.1.1 Cell Preparation: Materials List . . . . . . . . . . . . . . . . . . . . . . . 154
A.1.2 Cell Preparation (-1 Day) . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.1.3 Transfection: Materials List . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.1.4 Transfection Prep (0 Day) . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.1.5 Transfection (0 Day) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.1.6 Material Preparation Appendix . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 Cell Passaging and Plate Prep for Injections . . . . . . . . . . . . . . . . . . . . . 157
A.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.2.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.2.3 Plate Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.3 Solution Material Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.3.1 Trypsin Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.3.2 Fetal Bovine Serum (FBS) Preparation . . . . . . . . . . . . . . . . . . . 161
A.3.3 DMEM Growth Media Preparation . . . . . . . . . . . . . . . . . . . . . 162

Appendix B Attempted Experiments that Yielded No Conclusions . . . . . . . . . . . . 164
B.1 The Effects of Cell Synchronization on the Efficiency of Lance Array Nanoinjec-

tion on HeLa Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.1.1 Design of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.1.3 Protocols: Thymidine Growth Inhibition from (Yoshizawa2014) . . . . . . 166
B.1.4 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.1.5 Reasons for Experiment Abandonment . . . . . . . . . . . . . . . . . . . 170

B.2 Electrostatic Attraction of DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.2.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.2.2 Hypothesis: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

vii



www.manaraa.com

B.2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.2.4 Reasons for Experiment Abandonment . . . . . . . . . . . . . . . . . . . 173

B.3 Increasing Lenti-Viral Titers in Phoenix HEK cells using Lance Array Nanoinjec-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
B.3.1 Reasons for Experiment Abandonment . . . . . . . . . . . . . . . . . . . 174

B.4 Retinal Pigmented Epithelial Cell Transfection using CMV/GFP Plasmid . . . . . 175

Appendix C Arduino Code used for 3D Printed Cell Platform Lance Array Nanoin-
jections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

viii



www.manaraa.com

LIST OF TABLES

2.1 Normalized PI Uptake Efficiency P-Values . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Normalized Cell Survival P-Values . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Lance Geometry Experimentation: P-values for comparing percentage of living
cells in total cell population and PI+ cells in living cell population . . . . . . . . . 31

3.2 Lance Geometry Experimentation: Sample Size and Mean Value Summary . . . . 32
3.3 Lance Coating Experimentation: P-values for comparing different sample types in

terms of Percentage of Living Cells in Total Cell Population . . . . . . . . . . . . 34
3.4 Lance Coating Experimentation: P-values for comparing different sample types in

terms of Percentage of PI+ Cells in Living Cell Population . . . . . . . . . . . . . 35
3.5 Lance Coating Experimentation: Sample Size and Mean Value Summary . . . . . 36

4.1 Normalized PI Uptake Efficiency P-Values for Thermal Testing . . . . . . . . . . . 53
4.2 Normalized Cell Viability Efficiency P-Values for Thermal Testing . . . . . . . . . 53
4.3 Linear Combination P-Values for Temperature Contrast . . . . . . . . . . . . . . . 54
4.4 Linear Combination P-Values for Voltage Contrast . . . . . . . . . . . . . . . . . 54

5.1 P-Values for Speed of Injection Experiment . . . . . . . . . . . . . . . . . . . . . 66
5.2 Statistical Summary for Injection Speed Experiment . . . . . . . . . . . . . . . . . 66
5.3 P-Values for HeLa Serial Injection Experiment . . . . . . . . . . . . . . . . . . . 72
5.4 Statistical Summary for HeLa Cell Serial Injection Experiment . . . . . . . . . . . 72
5.5 P-Values for Fibroblast Serial Injection Experiment . . . . . . . . . . . . . . . . . 73
5.6 Statistical Summary for Fibroblasts Cell Serial Injection Experiment . . . . . . . . 74
5.7 Benchmark Comparison of Viral Transfection Technologies . . . . . . . . . . . . . 76

6.1 LAN Statistical summary of the sample types and associated GFP KO rates . . . . 86
6.2 One-Sided T-test Results from Comparisons of Multiple (x3) vs Single (x1) In-

jected Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 One-sided T-test Results from Intra-Group Comparisons (by Number of Times

Injected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 Animal Experimentation involving Viral Transduction of Wounds . . . . . . . . . 103
7.2 Animal Experimentation involving Non-Viral Transfection of Wounds . . . . . . . 104

8.1 P-values for sample comparison of the Number of Living Cells . . . . . . . . . . . 119
8.2 P-values for sample comparison of the Number of Living/PDGFR-β+ cells . . . . 120
8.3 P-values for comparison of the Number of Living Cells . . . . . . . . . . . . . . . 121
8.4 P-Values for sample comparison of the Number of Living/PDGFR-β+ cells . . . . 122
8.5 Statistical summary for all sample types in PDGFR-β Experimentation . . . . . . . 122

B.1 Cell Cycle and Transfection Rate Predictions . . . . . . . . . . . . . . . . . . . . 165
B.2 Stage 1: Cell Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.3 Phase Injections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

ix



www.manaraa.com

LIST OF FIGURES

2.1 SEM image of lance array. Lances measure 1-1.5 µm in diameter and 8-10 µm in
length and are spaced at 10 µm in a grid pattern. Contained on a 2 cm by 2 cm
lance array chip are approximately 4 million lances, making it possible for each
HeLa cell to be injected approximately 2-3 times in one injection event . . . . . . . 11

2.2 Illustrates a cross-sectional view of the manual injection device (left) and a zoomed
in view of the lance array interacting with the HeLa cell culture adhered to the glass
slip (right). During the injection process, the cell culture and the bottom portion of
the injection device is submerged in HBSS containing PI . . . . . . . . . . . . . . 11

2.3 The nanoinjection process consists of four major steps. Step 1 (Top Left) involves
placing the injection device into the test well on the 6-well plate and applying -
1.5VDC. Step 2 (Top Right) involves pressing the lance array downward into the
HeLa cell culture. Step 3 (Bottom Left) involves application of a series of square
wave pulses. Step 4 (Bottome Right) involves removal of the lance array from the
cell culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Relative efficiency of PI uptake in living HeLa cells for different salines and LAN
injection protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Relative cell survival of HeLa cells for different salines and LAN injection protocols. 18

3.1 Illustrates the general process of Lance Array Nanoinjection with notes specific
to the delivery of Propidium Iodide molecular load used for the biological testing
portion of the presented work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 SEM images of the three different shaped silicon lance arrays. (Top) Shows rows
of Flat, Narrow (FN) lance tips, measuring 1 µm in diameter. (Middle) Shows
rows of Flat, Wide (FW) lance tips, measuring 2 to 2.5 µm in diameter. (Bottom)
Shows rows of Pointed (P) lance tips, measuring 1 µm in diameter. . . . . . . . . . 25

3.3 SEM images of carbon coated silicon lance array. (Left) Shows arrangement of
lances post-carbon coating treatment. (Right) Close up image of a single carbon
coated lance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Nanoinjector device used for both Lance Geometry testing and Carbon Coating
testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Cell Viability results for Lance Geometry Experimentation are represented as the
percent of living cells in the total cell population for respective sample types. Ta-
ble 3.1 shows statistically significant relationships for comparison between sample
types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 PI Uptake results for Lance Geometry Experimentation are represented as the per-
cent of PI positive cells in the living cell population for respective sample types.
Table 3.1 shows statistically significant relationships for comparison between sam-
ple types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Cell Viability results for Lance Coating Experimentation are represented as the
percent of living cells in the total cell population for respective sample types. Ta-
ble 3.3 shows statistically significant relationships for comparison between sample
types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

x



www.manaraa.com

3.8 PI Uptake results for Lance Coating Experimentation are represented as the percent
of PI positive cells in the living cell population for respective sample types. Ta-
ble 3.4 shows statistically significant relationships for comparison between sample
types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 SEM image of Lance Array Silicon chip. Lances measure 10 microns in height,
1-2.5 microns in diameter, with a 10 micron spacing . . . . . . . . . . . . . . . . . 41

4.2 Lance Array Nanoinjection Stepwise Process. 1: Staging lance array into injection
solution maintained at either 3◦C or 23◦C. 2: Injection of cell culture, consisting
of both physical penetration of the cell membrane and electrical treatment. 3:
Staining of cell culture by introduction of PI into the extracellular solution at 0, 3,
6, and 9 minutes post-injection. 4: Induced pores from injection event eventually
close and PI molecules in the intracellular space of injected cells interact with
nucleic acids, increasing PI fluorescence. . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Diagram of Nanoinjection Device. Components shown (top to bottom) include:
Stepper motor mounted to ABS orthoplanar spring, threaded screw acting to ac-
tuate silicon lance array mounted above 3D printed Cell Culture Platform, and
associated electrical connections (ground connected to Cell Culture Platform). . . . 44

4.4 Cell Culture Platform assembly. Glass slide containing cell culture secured be-
tween the bottom PLA base and top PLA clip to provide proper alignment during
injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Experimental set-up illustrating injections performed for 3◦C treatment samples.
A thermocouple was used to verify surrounding fluid temperature of ice/water bath
of 3◦C prior to treatment. LabView program was used to verify proper electrical
signals delivered to Nanoinjection Device. Six well plate containing Cell Culture
Platforms and associated cell cultures were aligned to Nanoinjection Device. . . . . 45

4.6 Flow cytometry examples of six different sample types explored in this experiment.
a) Demonstrates how cells were gated for Living Cells from forward and side-
scatter signals. b-g) Represents gating of living cells based on signal intensity of
samples from blue-laser 2 sensor (BL-2). Note: The threshold for PI+ signals was
determined from non-treated control samples and is used globally to determine PI+
cells in treatment samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Box Plots of Normalized Propidium Iodide Uptake for all sample types, grouped
according to post-injection time when PI was added. Statistically significant rela-
tionships based on the permutation testing are indicated with a star. . . . . . . . . . 51

4.8 Mean Normalized PI Uptake for all sample types through time. . . . . . . . . . . . 52
4.9 Mean Normalized Cell Viability for all sample types through time. . . . . . . . . . 52

5.1 SEM image of two rows of lances contained on the Lance Array Silicon chip.
Lances measure 10 µm in length, 1-2.5 microns in diameter, and spaced 10 µm
from center to center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xi



www.manaraa.com

5.2 Lance Array Nanoinjection Stepwise Process. 1: Staging the lance array in the so-
lution containing the desired molecular load. 2: Electrical attraction of the molec-
ular load onto the lances. 3: Physically penetrating the cell membrane of target
cells and electrical repulsion of the molecular load into the cytoplasmic space. 4:
Removal of the lance array, leaving the molecular load in the intracellular space of
target cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Cross-sectional schematic of LAN injection device relative to cell culture platform.
Components include (top to bottom): stepper motor, threaded rod, coiled and or-
thoplanar springs, electrical connections, silicon lance array, glass slide for cell
culture, and cell culture platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Experimental set-up showing the electrical control box receiving three separate
input signals coming from three power supplies (not shown) and outputing appro-
priately timed output signals to the injection device mounted above the prepared
six-well plate. Cell culture platforms with the prepared cell cultures are seen as
white and red circular components resting in the wells of the six-well plate . . . . . 63

5.5 Electrical schematic for the current control box. An Arduino was used to control
two relays and a stepper motor driver for the injection process. Five LEDs are used
as indicators for power, output, and which input being passed through the box . . . 64

5.6 Injection Speed Box Plot. The two left-most box plots were the result of the slower
stepper motor (Rohs) whereas the three right-most box plots were the result of the
faster stepper motor (AA). Statistically significant relationships are noted with an
asterisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 Mean Percentage of Living/Propidium Iodide Positive HeLa Cells for all sample
types. Because of the number of statistical relationships that were derived, statis-
tically significant relationships are not noted on the box plot figure. For statistical
significant relationships, reference Table 5.3 . . . . . . . . . . . . . . . . . . . . . 71

5.8 Mean Percentage of Living/Propidium Iodide Positive Fibroblast Cells for all sam-
ple types. Because of the number of statistical relationships that were derived,
statistically significant relationships are not noted on the box plot figure. For sta-
tistical significant relationships, reference Table 5.3 . . . . . . . . . . . . . . . . . 73

6.1 Isometric projection of silicon etched lance array taken by scanning electron mi-
croscope. Lances measure 8 to 10 µm in length and 1 to 2.5 µm in diameter.
Spacing of lances from center-to-center measure 10 µm in both planar directions
in a grid of 2000 by 2000 lances per chip . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Diagram of the LAN set-up. (Left) Describes the four Phases of the LAN process
in terms of electrical parameters and physical events. (Right) Illustrates the con-
nection of the stepper motor to the orthoplanar spring to the silicon lance array.
With the lance array pointed downward, during the injection process, the lances
are inserted into cultured cells secured on the cell culture platform . . . . . . . . . 80

6.3 Representative flow cytometry results from the ten different samples types. (Left
Cluster) Illustrate controls from the experiment (a-d), which contain largely GFP
positive populations. (Right Cluster) Illustrate treatment samples that have been
injected one time (e, g, i) and comparably treated samples that have been injected
three times (f, h, j), with 1 hr rest periods between injection events . . . . . . . . . 84

xii



www.manaraa.com

6.4 Combined box plot results for controls and single injection (x1) treatment samples.
Statistically significant relationships are noted Table 6.2 and Table 6.3 . . . . . . . 88

6.5 Combined box plot results for controls and multiple injection (x3) treatment sam-
ples. Statistically significant relationships are noted Table 6.2 and Table 6.3 . . . . 88

7.1 Adenovirus transduction occurs as the non-enveloped virus containing double-
stranded DNA binds to coxsackievirus and adenovirus receptors (CAR) and are
internalized into the host cell. Once inside, the virus is contained in an endosome,
from which it can escape and then bind to the nuclear pore complex on the nuclear
membrane. The capsid then disassembles and the viral DNA is imported into the
nucleus where it can be transcribed and later translated in the cytosol to an effector
protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 Adeno-associated virus transduction occurs as the non-enveloped virus containing
single-stranded DNA binds to the host cell and is internalized. Once inside, the
virus is contained in an endosome, from which it can escape, collects around the
nucleus, and then bind to the nuclear pore complex on the nuclear membrane. The
exact mechanism for entry is not clearly understood, but it terms of transduction,
nuclear entry represents the rate limiting step for successful transduction. Once the
viral DNA is in the nucleus, it can form into an episome or in rare cases integrate
into the host genome. DNA is then transcribed, followed by mRNA translation for
protein production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 General differences between viral transduction and non-viral transfection. Note:
Green plus signs are features viewed as positive characteristics while red ”x” marks
are viewed as negative characteristics . . . . . . . . . . . . . . . . . . . . . . . . 100

7.4 General mechanisms for non-viral transfections methods . . . . . . . . . . . . . . 102
7.5 Presents key criteria used to develop transduction/transfection technologies for

wound healing applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.6 Illustrates the interplay between wound system characterization and new method

developments that create meaningful emerging technologies . . . . . . . . . . . . 106
7.7 Illustration of receptor during normal healing and stalled healing secondary to

degradation in chronic wounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1 Illustrates the interaction between PDGF growth factor isoforms (-AA, -AB, -BB,
and -DD) with PDGFR-beta in both normal (left) and chronic (right) wound heal-
ing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xiii



www.manaraa.com

8.2 Illustrates Lance Array Nanoinjection Device (a) and Process (b). a) LAN device in
a cross-sectional view consists of four major parts, which include: (top to bottom)
stepper motor, orthoplanar spring, silicon lance array, and cell culture platform.
Shown in isometric view on the lower left is a view of the cell culture platform,
illustrating how the glass slide containing the fibroblast culture locks into place
for injection. Shown in isometric view on the lower right is a SEM image of
the lances on the silicon-etched array. Lances are spaced every 10 µm in a grid
pattern, measuring 10 µm in length and 1-2.5 µm in diameter. b) Displays the
LAN process in three major steps which include: Staging, Injection, and Electrical
Delivery (refer to Lance Array Nanoinjection Process for details on activities that
occur during each step) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3 Shows box plot results for the Number of Living Cells (left) and the Number of
Living/PDGFR-β+ Cells (right), with outliers removed. For convenience, see Ta-
ble 1 to see statistically significant relationships between the different sample types
for Electro-mechanical experimentation . . . . . . . . . . . . . . . . . . . . . . . 120

8.4 Shows box plot results for the Number of Living Cells (left) and the Number of
Living/PDGFR-β+ Cells (right), with outliers removed. For convenience, see Ta-
ble 2 to see statistically significant relationships between the different sample types
for CRISPR-Cas9 experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.1 Fluorescent microscope image of Retinal Pigmented Epithelial cells 1 day post-
LAN with CMV/GFP plasmid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.2 Fluorescent microscope image of Retinal Pigmented Epithelial cells 3 day post-
LAN with CMV/GFP plasmid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

xiv



www.manaraa.com

NOMENCLATURE

ABS Acrylonitrile Butadiene Styrene
ANGPT 2 Angiopoietin 2
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
DNA Deoxyribonucleic Acid
DRIE Deep Reactive Ion Etch
EGF Epidermal Growth Factor
eGFP Enhanced Green Fluorescent Protein
EGFR Epidermal Growth Factor Receptor
FGF Fibroblast Growth Factor
GFP Green Fluorescing Protein
gRNA guide Ribonucleic Acid
HBSS Hanks Balanced Salt Solution
hGH Human Growth Hormone
HIF −1α Hypoxia-Inducible Factor-1α

IGF −1 Insulin-Like Growth Factor-1
IL−8 Interleukin-8
iNOS Inducible Nitric Oxide Synthase
KGF −1 Keratinocyte Growth Factor-1
LAN Lance Array Nanoinjection
NTC Non-Treated Sample
NHEJ Non-Homologous End Joining
PBS Phosphate Buffered Saline
PDGF −A Platelet-Derived Growth Factor A
PDGF −B Platelet-Derived Growth Factor B
PDGFR−β Platelet-Derived Growth Factor Receptor β

PI Propidium Iodide
PLA Polylactic Acid
PLFGF Placental Growth Factor
SDF −1α Stromal-Derived Growth Factor-1α

T GF −1 Transforming Growth Factor-1
V EGF Vascular Endothelial Growth Factor

xv



www.manaraa.com

CHAPTER 1. INTRODUCTION TO GENE THERAPY AND GENE MEDICINE

1.1 Motivation

Gene therapy and gene medicine approaches to correcting disease represent a major paradigm

shift in how clinicians are able to help patients, moving from a framework of reactionary treatment

of disease manifestations to fundamental, proactive prevention of disease when genetic alterations

are causative [1–3]. While still in a relatively early stage of development, medical approaches de-

signed to engineer genetic outcomes have had promising results in terms of both monogenic [4–11]

and polygenic [12–17] disease corrections.

Unfortunately, the actual method for transmission of the genetic loads to target cells re-

mains a challenge [18–21]. Many biotechnologies have been created to help address this issue

(with mixed results) [22]. The primary goal of all of these methods is to site-direct genetic loads

into cells without harming the host systemically or the target cell locally [18]. Key features fre-

quently noted as critical design requirements for these biotechnologies include:

• High transfection efficiency

• Effective in a wide range of cell types

• Flexible pay load capacity

• No immunologic response

• No insertional mutagenesis

1.2 Problem Statement/Hypothesis

One non-viral transfection biotechnology, known as Lance Array Nanoinjection (LAN),

has been created with these design requirements in mind. LAN works by using a combination of
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physical penetration of target cell membranes and electrical delivery of molecular loads using a

microfabricated silicon etched array of lances [23, 24]. Lance arrays contain 10 µm length lances

spaced 10 µm from center to center in a grid pattern, ultimately forming 4 million lances on a 2

cm by 2 cm chip.

Procedurally, nanoinjection works in a series of four major steps which include: staging the

lance in the solution containing the desired molecular load, electrical attraction of the molecular

load onto the lance, physical penetration of the cell membrane of target cells and electrical repul-

sion of the molecular load into the cytoplasmic space, and finally removal of the lance [25–27].

There are several attractive features of LAN relative to other transfection methods. First, it

does not rely on delivery agents that can cross-react with the immune system (such is the case with

several viruses [28–32]), nor does it create cytotoxic effects in target cells (such is the case with

many chemical based methods [22,28]). Second, because the lances are 1-2.5 µm in diameter, the

resulting pores created during the injection event are relatively large, making it possible for large

molecules to transiently pass into the cell. Even though the pores are relatively large, the trauma

induced during the process is relatively minimal, as evidenced by high cell viability rates (78% to

91%) previously noted [24]. This latter feature of cell viability is an issue in some instrumentation

based transfection methods, such as electroporation [33] and microinjection [25].

The research here presents the results of in vitro molecular modification of culture and pri-

mary cells by Lance Array Nanoinjection (LAN). Formally stated, the hypothesis of this research

is:

It is hypothesized that using an array of silicon etched lances in a process known as nanoin-

jection, molecular loads, such as propidium iodide and DNA, can be placed into the intracellular

space of both cultured and primary cell types via electrical interaction. Furthermore, it is also

hypothesized that these modifications will be both non-threatening to target cells viability as well

as efficient in terms of expression.

In an effort to explore this hypothesis, three major objectives have been created which include:

1. Characterize environmental factors that impact transfection efficiency

2. Demonstrate LAN genetic modification of immortalized HeLa culture cells using an indica-

tor marker
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3. Investigate the effects of LAN genetic modification of human primary, neonatal fibroblasts

This chapter provides background information on transfection technologies and also gives

a brief overview of the approaches used to support these research objectives and the contributions

made in the form of publications.

1.3 Background

1.3.1 LAN in the Context of Transfection Technologies

Traditionally, viruses have been the benchmark for which transfection efficiency is mea-

sured. However, they fall short of meeting critical design requirements for robust transfection

(as detailed above), particularly in preparation for clinical application. Adenoviruses, Adeno-

associated viruses, and lentiviruses are all considered to have high transfection rates in a wide range

of cell types [30, 34–42]. Unfortunately, adenoviruses are immunologically inflammatory which

can be life-threatening [29, 43], adeno-associated viruses can cause insertional mutagenesis which

can be cytotoxic [35,36], and lentiviruses cause immunologic responses and insertional mutagene-

sis [30–32, 44]. While retroviruses are useful in CNS (central nervous system) targets [37, 45], the

risk of insertional mutagenesis is quite high [37,46]. Furthermore, viruses in general are limited in

their effectiveness because of the limited payload capacity (≤ 10 kilo base pairs (kbp)) [37].

In contrast, LAN is able to by-pass many of these short-comings. First, LAN does not

utilize protein vehicles which could cross-react with the immune system, thereby removing im-

munologic response issues. Second, LAN creates relatively large pores in target cells (1-2 µm

diameter), allowing for large molecular loads to enter, thus reducing the concern of not having suf-

ficient payload capacity. Third, LAN is compatible with gene editing tools such as CRISPR-Cas9

that mitigate concerns regarding insertional mutagenesis. While the same can be said of viruses

if re-programmed to remove self-insertional mechanisms, LAN does not have the same rigor of

testing to go through prior to use as viral delivery because insertional mutagenesis in the context of

LAN is only an element directly related to the molecular load type, not LAN as a delivery method.
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1.3.2 Previous Nanoinjection Works

In order to place context to the proposed LAN based research for culture and primary cells,

a brief overview of previous foundational works is presented.

Single Lance Nanoinjection

Initial development of the Nanoinjection concept began at Brigham Young University in

2007 where researchers developed a method for exogenous DNA delivery to mouse embryonic

cells via a solid, microfabricated lance. This process became known as ‘nanoinjection’ and is

described as electrical attraction of molecular elements such as DNA onto a micron-sized needle

structure, inserting the needle through the target cell membrane, and then electrically repelling the

molecular load into the pronucleus to be integrated during pro-nuclei disintegration and nuclear

formation events [25, 47]. Subsequent work showed effects of voltage pulsing while the lance is

inserted in the embryo, allowing for a phenomena known as intracellular electroporetic nanoin-

jection, which is a localized transient pore formation event in the pronucleus allowing molecular

loads to enter [27].

Lance Array Nanoinjection

More recently, researchers have modified the single lance nanoinjector to be an array of

10 micron-length lances capable of nanoinjecting hundreds of thousands of cells simultaneously

[24, 25, 48]. The biologic application for the design change reflects the fact that these lance arrays

can molecularly modify somatic, adherent cell types–a critical distinction from the embryonic

target cells used previously.

Electrical Modelling

Previous research involving the Single Lance Nanoinjector helped to characterize and model

the electrostatic attraction and repulsion of DNA to the device [26,49,50] and an extension of this

work has been conducted for LAN [51, 52]. The rationale behind this effort deals with the need

to model molecular load delivery based on electrical pulse levels. Based on conclusions derived
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from these works, it has been theorized that much lower voltages (i.e. 1.5V) are required to pro-

vide molecular delivery than traditional electroporation transfection protocols (typical kV), which

suffer from low cell viability rates as a result of high voltage exposure.

Early Biologic Testing

Mechanistic evaluation of LAN has also been performed, with initial testing with propid-

ium iodide (PI), a dye normally impermeable to the cell membrane [24, 53]. In these experiments,

it has been shown that following LAN that HeLa target cells have elevated levels of propidium

iodide, manifested by increase fluorescence during flow cytometry.

Current Status of LAN

As mentioned previously, LAN development hinges upon in vitro transfection of target

cells. While previous work has provided key foundational elements to this end, full investigation

of in vitro modification of both immortalized culture cells and primary cells is the focus of this

work.

1.4 Research Approach/Literature Contributions

The sequential approach to establishing LAN in culture and primary cells can be compart-

mentalized broadly into the three major objectives outlined in this chapter. Discussed briefly here

are supporting research topics that explore these objectives.

1.4.1 Objective 1: Characterize environmental factors that impact molecular load delivery

Chapter 2 investigates the effects of three different saline solutions on propidium iodide up-

take in nanoinjected HeLa cells. The body of this chapter comes from a conference paper presented

at the 2014 International Design Engineering Technical Conference in Buffalo, NY.

Chapter 3 investigates the effect of lance geometry and carbon coating of silicon lances

on propidium iodide uptake in Lance Array Nanoinjection of HeLa 229 cells. The body of this
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chapter comes from a journal article accepted for publication in the Journal of Micromechanics

and Microengineering.

Chapter 4 investigates the effects of transient low temperature on propidium iodide uptake

in Lance Array Nanoinjected HeLa cells. The body of this chapter comes from a journal article

submitted to the Journal of Nanotechnology in Engineering and Medicine.

Chapter 5 investigates the effect of injection speed and serial injection on propidium iodide

entry into cultured HeLa and primary neonatal fibroblast cells using Lance Array Nanoinjection.

The body of this chapter comes from a journal article submitted to SpringerPlus.

1.4.2 Objective 2: Demonstrate LAN genetic modification of immortalized HeLa culture
cells using an indicator marker

Chapter 6 investigates the effect of a CRISPR-Cas9 plasmid designed to knock-out consti-

tutively expressed GFP in HeLa cells using Lance Array Nanoinjection. The body of this chapter

comes from a journal article submitted to SpringerPlus.

1.4.3 Objective 3: Investigate the effects of LAN genetic modification of human primary,
neonatal fibroblasts

Chapter 7 comprises a combination of two review journal articles that is included to provide

a context to chronic wound healing, particularly in regards to the platelet derived growth factor

receptor β (PDGFR-β ) and genetic engineering. The first portion of the chapter was derived from

a paper published in the Journal of Diabetes Science and Technology. The second portion of the

chapter was derived from a paper submitted to Experimental Dermatology.

Chapter 8 investigates the ability of LAN to deliver a CRISPR-Cas9 plasmid to primary,

neonatal fibroblasts using Lance Array Nanoinjection. This plasmid is designed to up-regulate

PDGFR-β in the fibroblasts. This work is designed as a proof-of-concept work that demonstrates

a clinically relevant application of LAN in conjunction with chronic wound healing. The body of

this chapter comes from a journal article submitted to PLoS ONE.
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1.5 Summary of Presented Research

The final chapter, Chapter 9, provides a brief survey of salient results of the research pre-

sented. As part of this chapter, a short discussion will be devoted to highlighting why these findings

are important as well as provide a context for potential future work.
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CHAPTER 2. SALINE SOLUTION EFFECTS ON PROPIDIUM IODIDE UPTAKE

The following chapter was constructed from a conference paper that was presented at the 2014

International Design Engineering Technical Conference (Buffalo, NY) and is entitled “Saline So-

lution Effects on Propidium Iodide Uptake in Nanoinjected HeLa Cells” [54]. As a result, there

may be some material that is contained elsewhere in this dissertation but is presented here as a

representation of this original conference article.

2.1 Introduction

Genetic engineering of various mammalian target cells has become a new frontier in medicine.

Researchers are actively investigating the efficacy of modifying disease states that include but are

not limited to: joint erosive arthritis [55], intervertebral disc degeneration [55], aseptic orthopedic

implant loosening [55–57], osteoporosis [55], soft tissue repair (cartilage, tendon, ligament) [55],

bone healing [55, 58–60], ventricular arrhythmia [61], congestive heart failure [62], chronic dia-

betic wounds [63–68], incisional scar formation [69, 70], psoriatic skin disorders [71], hereditary

blood disorders [72], etc. Because genetic engineering aims to control aberrant function or im-

prove existing function at the fundamental cellular level, there is potential to significantly impact

patient healthcare by improving genetic engineering technologies.

However, the process of introducing exogenous genetic material into a mammalian cell is

not trivial but rather multi-step and highly complex [73,74]. One of the initial barriers to exogenous

molecular load delivery is introducing molecular loads into the cytoplasm without compromising

the structural and functional integrity of the cell.

Traditionally, genetic reprogramming techniques have sought to penetrate and integrate

molecular loads into target cells using one of two major methods: viral [75, 76] and non-viral

[71, 77, 78]. Viral methodologies generally consist of using a viral vector programmed with a
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specific genetic sequence. Once engineered, these viral particles are allowed to infect targeted

tissues.

Unfortunately, viral gene therapy techniques have several challenges that limit clinical use.

These limitations to viral gene therapy include issues related to immunologic safety, virus contain-

ment to targeted tissues, vector production costs, limits to the amount of genetic load capacity of

the virus, and production containment and safety [59]. Furthermore, within the medical culture,

major barriers exist for viral method acceptance (despite their benchmark efficiencies) because of

a tainted safety history. For example, French clinical trials in treating X-linked Severe Combined

Immunodeficiency with a murine viral vector initially proved successful in creating functional im-

mune systems in nine of ten treated patients. However, 3 of the ten developed leukemia and one

died [79].

Because of these limitations with viral based genetic engineering, researchers have put

considerable effort into generating alternate, non-viral methods for gene delivery. Currently, there

are several combinations of physical delivery applications practiced. Characteristically, physical

methods of exogenous genetic delivery use either physical or chemical approaches for delivery.

Two of those most common approaches include lipofection [77] and some form of electroporation

[74, 78, 80]. Lipofection, in short, consists of lipophilic molecules that encapsulate a molecular

load, such as DNA, in the extra-cellular space and transport the load to the intracellular space

because of the cell membrane’s permeability to lipophilic molecules. Electroporation operates by

applying an external electrical field to the cell and consequently causing formation of transient

pores that allows for extracellular molecules to pass into the cell. Both techniques have intrinsic

limitations that can be tied to the fact that they can cause significant compromise to the cell and

consequently produce lower cell viability, an undesired outcome for clinical use.

Recently, researchers have demonstrated an alternative, non-viral technique for molecular

load delivery called nanoinjection [26]. Nanoinjection is a process described as electrical attraction

of a molecular loads onto a micron-sized needle structure, inserting the needle through the cell

membrane, and then electrically repulsing the molecular load into the cytoplasm. This process,

using a single lance nanoinjector, has been used successfully in transgenic mice generation [25].

More recent modifications to the nanoinjection process include modifying the single lance

injector to be an array of 10 µm-length nanoinjector needles capable of nanoinjecting thousands
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of cells simultaneously [81]. HeLa cell studies have illustrated that nanoinjection can effectively

deliver propidium iodide into target cells without compromising cell viability [24].

The present research seeks to extend previous work related to nanoinjection by examin-

ing two environmental factors, namely saline injection solution type and peak pulse amplitude,

that contribute to propidium iodide delivery into HeLa cells. Previous examination by other re-

searchers [82] have demonstrated in electroporation studies, that solutions with increasing potas-

sium (K+) require higher electrical field strengths to induce electroporation, a transient biological

response where pores form in the cell membrane. The rationale for this finding is that when a

cell, which has a transmembrane potential (Vm), is exposed to an electrical field, the anodic side

of the cell membrane is first to reach a Vm = 0, at which point pores can begin to form. If the ex-

tracellular environment contains increasing amounts of K+, then the voltage magnitudes at which

this behavior can initiate are greater. Since cell viability decreases with higher voltage applica-

tion in electroporation, it is desirable to know in the context of nanoinjection if at lower voltages

comparable PI uptake can occur by simply using a different injection solution.

2.2 Methods

2.2.1 Lance Array Fabrication and Injection Device

Silicon lance arrays were photolithographically defined and etched using DRIE (deep re-

active ion etching). Following etching, the silicon was coated in a 0.5 µm thick layer of carbon

using chemical vapor deposition (CVD). Lances measure 1-1.5 µm in diameter and 8-10 µm in

length and are spaced at 10 µm. The silicon wafer is then cut into 2 cm by 2 cm square chips, each

containing roughly 4 million lances [81] (see Figure 2.1).

The injection device consists of an orthoplanar spring [83,84], fabricated with acrylonitrile

butadiene styrene (ABS) plastic using rapid prototyping, that has attached at its base with double

sided carbon tape the carbon coated silicon chip described above. Two electrical components are

housed within the orthoplanar device: gold contacts located at the interface between the orthopla-

nar spring and the carbon coated silicon chip, and the stainless steel wire extending from the gold

contacts to the outer surface of the injection device (see Figure 2.2).
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Figure 2.1: SEM image of lance array. Lances measure 1-1.5 µm in diameter and 8-10 µm in
length and are spaced at 10 µm in a grid pattern. Contained on a 2 cm by 2 cm lance array chip are
approximately 4 million lances, making it possible for each HeLa cell to be injected approximately
2-3 times in one injection event

Carbon-coatedmSilicon
LancemArray

StainlessmSteel
Electrode

GlassmSlip

GlassmSlipStainlessmSteel
Electrode

Well

InjectionmSolution
withm0.02mmg/mLmPI

Voltage
Source

HeLamCellm
Mono-Layer

Carbon-coatedmSilicon
LancemArray

Figure 2.2: Illustrates a cross-sectional view of the manual injection device (left) and a zoomed
in view of the lance array interacting with the HeLa cell culture adhered to the glass slip (right).
During the injection process, the cell culture and the bottom portion of the injection device is
submerged in HBSS containing PI

2.2.2 Propidium Iodide

In treatment samples, propidium iodide (PI) was used as an indicator of delivery efficacy.

PI is a positively charged (2+) molecule that cannot penetrate the cell membrane of living cells

[85–87]. Traditionally used to label dead cells that have had their cell membranes compromised,

PI operates as a red fluorescing dye that intercalates between base pairs of both RNA and DNA.

This association with genetic material increases the fluorescent nature of PI 20 to 30 times, making
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the appropriately exposed cell identifiable with flow cytometry [88]. Because nanoinjection is

supposed to create transient pores via lancing action, the PI identified in living cells is characterized

as a good indication that PI indeed entered the cell and that the cell survived.

2.2.3 Nanoinjection Technique

The mechanics of nanoinjection can be separated into two major components, the second

being used for samples treated with pulsed voltage protocols. The first component includes the

physical lancing of the cell membrane by pressing downward on the injection device. This conse-

quently causes the carbon coated silicon chip attached to the lower side of the injection device to

lance/penetrate the cell membrane of the target cell. The second component includes using electri-

cal attraction of particles, such as PI, to the lance and then electrically repulsing the particle (with

a reversal of voltage) once the lance has penetrated the cell membrane. Shown is Figure 2.3 is a

step-wise process of how these two components operate during the injection process.

2.2.4 Testing Methods

Testing Plate Preparation

HeLa 229 cancer cells were cultured in Dulbeccos Modified Eagles Medium (DMEM)

with 10% Fetal Bovine Serum (FBS) and Gentamicin and then, incubated at 37C with 5% carbon

dioxide. Once cells had matured, six well plates were prepared with roughly 106 cells per well,

which were allowed to adhere to a 22 mm by 22 mm glass slide over a 24 hr period, creating a

confluent mono-layer. For experiments to be performed with voltage application, a stainless steel

electrode plate was added to each well beneath the glass slide.

After allowing the cells to adhere to the glass slide for 24 hr in the incubator, the six well

plates had the DMEM removed and then each well was rinsed with Hanks Balanced Salt Solution

(HBSS). Then, depending on the particular saline being tested, the wells were supplied with 2 mL

of either Hanks Balanced Salt Solution (HBSS), Phosphate Buffered Solution with K+ (PBS+K+),

or Phosphate Buffered Solution without K+ (PBS-K+). These salines represent the injection saline
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Figure 2.3: The nanoinjection process consists of four major steps. Step 1 (Top Left) involves
placing the injection device into the test well on the 6-well plate and applying -1.5VDC. Step 2
(Top Right) involves pressing the lance array downward into the HeLa cell culture. Step 3 (Bottom
Left) involves application of a series of square wave pulses. Step 4 (Bottome Right) involves
removal of the lance array from the cell culture

solution. Following the placement of the injection saline, PI was added to the well bringing the

concentration of PI in the well to 0.02 mg of PI/mL of injection saline solution.

The injection process, which can be seen in Figure 2.3, consisted of lowering the injection

device with carbon coated silicon chip attached into a treatment well. The well, now containing the

specific injection saline (either HBSS, PBS+K+, or PBS-K+), completely covers the carbon coated

silicon chip, glass slip with HeLa cells attached, and the stainless steel electrode.

At this point, one of eight treatment protocols was followed for each saline type and in-

cludes:

1. Negative Control - No applied voltage, No Lancing, and No PI
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2. Positive Control - No applied voltage, No Lancing, and +PI (0.02 mg/mL solution)

3. Treatment Protocol: Lancing Only - No applied voltage or PI, +Lancing

4. Treatment Protocol: Lancing and PI - Lance assisted Diffusion: No applied voltage,

+Lancing, and +PI (0.02 mg/mL solution)

5. Treatment Protocol: Pulsed 3V - 20 s application of -1.5VDC for PI attraction followed

by 5 s square wave voltage repulsion pulse of 1.5V to 3V with a 2ms period; +Lancing, and

+PI (0.02 mg/mL solution)

6. Treatment Protocol: Pulsed 5V - 20 s application of -1.5VDC for PI attraction followed

by 5 s square wave voltage repulsion pulse of 1.5V to 5V with a 2ms period; +Lancing, and

+PI (0.02 mg/mL solution)

7. Treatment Protocol: Pulsed 7V - 20 s application of -1.5VDC for PI attraction followed

by 5 s square wave voltage repulsion pulse of 1.5V to 7V with a 2ms period; +Lancing, and

+PI (0.02 mg/mL solution)

8. Treatment Protocol: Pulsed 9V - 20 s application of -1.5VDC for PI attraction followed

by 5 s square wave voltage repulsion pulse of 1.5V to 9V with a 2ms period; +Lancing, and

+PI (0.02 mg/mL solution)

Post Testing Flow Cytometry Preparation

All samples, following specific testing protocols, were treated with 0.5 mL of 5x Trypsin

(Sigma) and incubated for 5 min to remove adherent HeLa cells from the glass slip. Following

incubation, wells were treated with 1 mL of DMEM to de-activate the trypsin and then transferred

to FACS tubes (BD Biosciences) for centrifugation for 10 min at 2000 rpm. Supernatants were

removed following centrifugation and re-suspended in 0.25 mL in HBSS for flow cytometry (BD

Biosciences).
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2.2.5 Flow Cytometry and Statistical Analysis

Following post testing preparation, samples were analyzed using flow cytometry to quantify

cell viability and PI uptake in living and dead cells. For each sample examined, 10,000 events

were captured and characterized. Analysis software (BD FACSDiva, Dako Summit) allowed for

visualization of these data sets using forward and side scatter.

Statistical analysis was then employed to determine cell survival and PI uptake for each data

set. For cell survival, samples were normalized against the negative controls. This normalization

was performed in two steps. The first step consisted of representing the total number of living cells

in the sample divided by the total number of living and dead cells in the sample. That numerical

result was then divided by the ratio of the number of living cells in the control well divided by the

number of living and dead cells in the negative control particular to that six well plate.

a =
Living Cells in Test Sample

Total Living and Dead Cells in Test Sample

b =
Living Cells in Negative Control

Total Living and Dead Cells in Negative Control

Cell Survival =
a
b

For PI uptake, samples were normalized against the positive controls and represented in a

similar manner as previously described. The total number of living, PI positive cells in a sample

were divided by the total number of living cells in a sample. That numerical result was then divided

by the total number of living, PI positive cells in the positive control divided by the total number

of living cells in the positive control particular to that six well plate.

c =
Living and PI+ Cells in Test Sample
Total Living Cells in Test Sample

d =
Living and PI+ Cells in Positive Control
Total Living Cells in Positive Control
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Table 2.1: Normalized PI Uptake Efficiency P-Values

Comparisons Lance Lance+PI 1.5-3 V 1.5-5 V 1.5-7 V 1.5-9 V
HBSS vs PBS+K+ 0.0125 0.0163 0.0352 0.0095 0.0184 0.1536
HBSS vs PBS-K+ 0.0005 0.4804 0.1014 0.0415 0.4625 0.3861

PBS+K+ vs PBS-K+ 0.0125 0.1017 0.0010 0.0000 0.0159 0.1027

Table 2.2: Normalized Cell Survival P-Values

Comparisons Lance Lance+PI 1.5-3 V 1.5-5 V 1.5-7 V 1.5-9 V
HBSS vs PBS+K+ 0.3892 0.0652 0.0630 0.2614 0.0155 0.0919
HBSS vs PBS-K+ 0.0074 0.0270 0.1995 0.0016 0.0038 0.2895

PBS+K+ vs PBS-K+ 0.0244 0.0029 0.3986 0.0257 0.2068 0.0448

PI U ptake =
c
d

Following normalization, sample populations were examined for outliers using a modified

Thompson Tau test and then statistically evaluated using a students t-test for statistical significance

between populations, with p-values less than 0.05 considered statistically significant.

2.3 Results and Discussion

2.3.1 PI Uptake Efficiency

Figure 2.4 shows the relative efficiency of PI uptake in living HeLa cells for the three

different salines (HBSS, PBS+K+, and PBS-K+) at two different non-voltage protocols and four

different voltage pulsing protocols. Table 2.1 shows relative p-values (significance measured as

p<0.05) for comparisons between the different sample groups.

The overall behavior of the PI uptake can be categorized into three major findings. First

and most notable is that PBS+K+ sample groups are significantly better than the other two salines

at PI delivery at all voltages, except at the 9V pulsed voltage. While not significantly higher at 9V,

PBS+K+ samples appear to be modestly higher than the other salines. Peak efficiency for PBS+K+

occurs at 7V pulsed voltage, reaching a ratio of 3.352.
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Figure 2.4: Relative efficiency of PI uptake in living HeLa cells for different salines and LAN
injection protocols.

A second finding illustrated in the PI Uptake efficiency is seen by comparing the Lance/PI

group and the four different voltage groups. It is noted that there is only a significant increase in

PI uptake in PBS+K+ at 5V (p=0.0422) and 7V (p=0.0148) pulsed voltages. The other two saline

groups exhibit no significant increase in PI uptake when voltage applied and in fact, PBS-K+

actually experiences a reduction in PI uptake at 3V and 5V pulsed voltage compared to Lance/PI

group. For 9V pulsed voltages, none of the salines types exhibited significance increases over the

Lance-PI treatment group.

A third finding can be seen in context of comparing the saline types to themselves at the

four pulsed voltages. In comparing 3V against 5V, only PBS+K+ is significantly higher (p=0.0220)

among the three salines. At 5V to 7V, only PBS-K+ is significantly higher (p=0.0159). At 7V to

9V, only +K+ is significantly lower (p=0.011).
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2.3.2 Cell Survival

Figure 2.5 shows the relative cell survival of HeLa cells as a result of nanoinjection for the

three different salines (HBSS, PBS with potassium, and PBS without potassium) at two different

non-voltage protocols and four different voltage pulsing protocols. Table 2.2 shows relative p-

values (significance measured as p<0.05) for comparison between the different sample groups.
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Figure 2.5: Relative cell survival of HeLa cells for different salines and LAN injection protocols.

Of particular note is the relative behavior exhibited between the Lance/PI group and the 3V

pulsed voltage group. While there is no significant difference between the PI uptake when compar-

ing Lance/PI to 3V pulsed voltage, there is a dramatic difference in cell survival between these two

groups (p = 0.0025, 0.0000, 0.0182 for HBSS, PBS+K+, PBS-K+ respectively). Embedded in this

relationship though, is the fact that PI uptake efficiency is based upon cells that are both living and

PI positive. While it is true that there are comparable PI uptake efficiencies between the Lance/PI
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and 3V pulsed voltage groups, the 3V pulsed voltage group actually have more cells labeled with

PI initially but don’t survive the process and thereby reduces the PI uptake efficiency.

A second finding that is worth noting is that when comparing the cell survival of the Lance

sample group to the Lance/PI group, that in both cases PBS-K+ is significantly better than the other

two salines. While modest in degree, it appears that PBS-K+ offers approximately 3% increase

in cell survival. This finding suggests that potassium, which is present in HBSS and PBS+K+,

may destabilize the cell enough to prevent cellular recovery post-nanoinjection. This finding is

not as clearly defined when voltage protocols are used suggesting that the role of potassium is

complicated by voltage.

2.3.3 Potassium Effects

As mentioned previously, prior research indicates that the threshold voltage required for

electroporation of a cell membrane is reduced in low potassium extracellular solutions. Based

on the data represented in the context of nanoinjection, this finding in regard to potassium is not

supported. This suggests two possibilities that require further investigation. The first is that nanoin-

jection with the voltage protocols outlined above may not actually induce electroporation of the

cell membrane because it is not sufficiently large enough, despite the close proximity of the elec-

trode to the cell membrane. Another possibility is that because the cell membrane is physically

lanced, the relative behavior of the cell in the potassium environments may react differently. Be-

cause there are micron-sized pores created by the lancing process, the cell membrane has no need

to create transient electroporation pores to re-establish homeostatic transmembrane potential.

2.4 Conclusion

In order to improve genetic engineering, researchers will need technologies that can facili-

tate molecular load delivery to the intracellular space without compromising cell survival. Nanoin-

jection is one such technology that appears to be a viable option.

In this study, PI uptake efficiency and cell survival are investigated in the context of using

different injection salines, non-voltage lancing protocols, and pulse voltage protocols. Shown here

is that PBS+K+ experiences higher overall PI uptake efficiencies than HBSS and PBS-K+. Also,
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cell survival is variable in degree for voltage treated samples, ranging primarily between 75% and

87%.
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CHAPTER 3. THE EFFECT OF LANCE GEOMETRY AND CARBON COATING OF
SILICON LANCES

The following chapter was constructed from a journal article that has been accepted for publication

by the Journal of Micromechanics and Microengineering and is entitled “The Effect of Lance

Geometry and Carbon Coating of Silicon Lances on Propidium Iodide Uptake in Lance Array

Nanoinjection of HeLa 229 Cells”. As a result, there may be some material that is contained

elsewhere in this dissertation but is presented here as a representation of this original journal article.

3.1 Introduction

Correcting disease at a fundamental cellular level has been and continues to be a promising

medical research area [56, 89, 90]. Because of advancements in both creation and manipulation of

relevant target cells, such as induced pluripotent stem cells [91–94], as well as enhancements in

site-directed gene modification tools, such as CRISPR/Cas9 [95–97], there is an intensified need

to develop methods for combining these tool types into meaningful biotechnologies [98–100].

Unfortunately, placing gene editing constructs into useful target cells types is complicated by the

delivery process, both in terms of effectively getting genetic pay-loads to the intracellular space of

target cells and maintaining cell viability following treatment.

Many methods have been developed to help address the need to facilitate molecular load

delivery and can categorically be separated into four areas, which include viral [101–103], particle-

based [104–106], reagent-based [77, 107], or instrumentation-based methods [74, 107, 108]. En-

gineered viruses are the most common biologic carrier method for molecular delivery largely be-

cause of the self-promotional features associated with the viral life-cycle [109, 110]. Once repro-

grammed with the desired genetic pay-load, viruses can infect specific surface marker carrying

cells [111–114] and manufacture the desired effect, using the viruses’ own re-purposed machinery

if necessary [115].
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Unfortunately, even though viral transfection methods often exhibit benchmark efficiencies

for molecular delivery, there are clinically-limiting drawbacks to using viral transfection, which

include: immunologic safety, viral containment to target tissues, limits to genetic load capac-

ity, and insertional mutagenesis [116]. Essentially, these “procedural limitations” of viral vectors

have caused researchers to investigate alternative non-viral methods, particularly particle-based

and instrumentation-based, for transfection [117].

In terms of instrumentation-based biotechnologies, several researchers have created high

throughput nanowire biomolecule delivery and sensing systems which have demonstrated utility

in terms of transfection applications [118–122]. This work contributes to this group of work by

focusing on a non-viral, instrumentation-based transfection technology, known as nanoinjection,

that uses nanowire-like silicon lance structures to electrically interact and deliver biomolecules to

target cells [25].

The first generation nanoinjection device was originally designed as a six-bar microelec-

tromechanical device designed to modify single mouse embryos with foreign transgenes [25–27].

Since that time, the scope of nanoinjection has been extended to be used for simultaneous modifi-

cation of hundreds of thousands of somatic cells using an array of silicon etched lances, a process

known as Lance Array Nanoinjection (LAN) [23, 24, 54].

Procedurally, LAN works in four major steps which combine physical penetration of the

cell membrane and electrical delivery of molecular loads. Figure 3.1 shows these four steps which

include the following: staging–electrical attraction of molecular loads, injection–physical pen-

etration of target cell membranes, delivery–electrical repulsion of molecular loads, and finally,

removal–withdrawal of the lances from the target cells’ intracellular space [24].

This work presents two major fabrication alterations to the silicon lance array typically

used for LAN, which include: lance geometry (lance tip shape and shaft diameter), and presence

of a carbon coating. The purpose of lance geometry testing is to evaluate how cells respond to cell

membrane damage when injections are performed by different lance geometries. Because cellular

trauma is a concern in regards to preserving cell viability, lance geometry is an important inves-

tigative factor in terms of LAN. The purpose for the lance coating test is to evaluate how carbon

coating presence can impact the electrical events that occur during LAN, a parameter important

for molecular load delivery in both in terms of the attraction and repulsion of molecular loads [26].
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Staging: Electrical Attraction

of Molecular Load to Silicon Lances

Figure 3.1: Illustrates the general process of Lance Array Nanoinjection with notes specific to the
delivery of Propidium Iodide molecular load used for the biological testing portion of the presented
work.

In an effort to create a lance array that both conducts electricity easily and thereby allows for a

low applied voltage for LAN, silicon lances were constructed with a thin (<100 nm thick) carbon

coating. To help evaluate the effects of these alterations, biologic testing results are presented,

which explore the performance with which propidium iodide (PI), a cell membrane impermeable

dye, can be delivered to HeLa 229 cells via LAN.
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3.2 Materials and Methods

3.2.1 Lance Array Fabrication

Microfabrication of the silicon lance arrays have been previously described in the litera-

ture [23] and is noted briefly here only for convenience in regards to the alternations or additions

made for the lances tested in this work. Silicon lance array construction consists of photolitho-

graphic definition of positive photoresist (AZ330F) in an array of circular features spaced at 10 µm

followed by deep reactive ion etching (DRIE). In order to create pointed lances, a sulfur hexafluo-

ride (SF6) isotropic plasma etch undercuts the photoresist features, resulting in a conical shape that

supports the photoresist dot. This etch is typically in the range of 30 to 60 seconds, depending on

the desired undercut depth. Following SF6 etching, the photoresist dots are stripped using acetone

and then exposed for 2 minutes in an oxygen plasma etch. The final lance array consists of a 2 cm

by 2 cm chip etched with an array of 10 µm length solid lances which are spaced every 10 µm in

both planar directions (see Figure 3.2).

Lance Geometry Fabrication

Silicon lance arrays construction for lance geometry testing can be categorized into three

different groups and include: Flat, Narrow (FN, 1 µm diameter); Flat, Wide (FW, 2-2.5 µm diam-

eter); and Pointed (P, 1 µm diameter) (see Figure 3.2). The lance microfabrication used the same

process as what is described in Lance Array Fabrication with two alterations. First, only the P

lances underwent the sulfur hexafluoride etch to create a pointed tip. Second, the relative diameter

of the lance was controlled by altering the length of photoresist exposure – the shorter exposure

times yielded a larger diameter dot, which resulted in larger diameter lances.

Lance Carbon Coating Fabrication

Silicon lance array construction for carbon coated testing followed the same process as

what is described in Lance Array Fabrication with one additional step. Following the oxygen

plasma etch, the lances were coated in a <100 nm thick layer of carbon using chemical vapor

deposition (ethylene at 230 sccm, hydrogen at 218-220 sccm, at 900C for 5 min) (see Figure 3.3)
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Figure 3.2: SEM images of the three different shaped silicon lance arrays. (Top) Shows rows of
Flat, Narrow (FN) lance tips, measuring 1 µm in diameter. (Middle) Shows rows of Flat, Wide
(FW) lance tips, measuring 2 to 2.5 µm in diameter. (Bottom) Shows rows of Pointed (P) lance
tips, measuring 1 µm in diameter.

Though the angle of the lances in Figure 3.3 makes them look flat, these lances were fabricated

using the pointed protocol.

As mentioned previously, coating the silicon lances in a thin layer of carbon is hypothesized

to alter the performance of PI delivery during LAN. Experimental investigation of the electrical

performance of the two lance array types (Si and CC) demonstrate that non-coated silicon lance

arrays (Si) have a resistance of 1364 Ω and the carbon coated silicon lance arrays (CC) have a

resistance of 395 Ω.

3.2.2 Nanoinjection Device

Figure 3.4 provides a side-view schematic of the LAN device seated in a six well plate

filled with an injection solution containing the molecular load to be injected. Noted are three ma-

jor elements making up the LAN device, which includes: the orthoplanar spring (with electrical

connection), the silicon lance array, and the glass slide/counter electrode. The orthoplanar spring

25



www.manaraa.com

Figure 3.3: SEM images of carbon coated silicon lance array. (Left) Shows arrangement of lances
post-carbon coating treatment. (Right) Close up image of a single carbon coated lance.

Figure 3.4: Nanoinjector device used for both Lance Geometry testing and Carbon Coating testing.

design has been described previously in the literature [23,84] and contains compliant flexural mem-

bers that inhibit transverse and rotational motions during vertical actuation. The silicon lance array

adheres to the inferior portion of the orthoplanar spring using double-sided carbon tape, thereby

electrically connecting the lance array to a switch box that provides the appropriate electrical in-

puts according to the treatment sample type. Shown below the lance array is a glass slide sitting

atop a stainless steel counter-electrode (serves as ground). The glass slide contains the cell culture.

Operation of the nanoinjection device occurs as manual force is applied to the superior sur-

face of the orthoplanar spring, allowing the attached lance array (with lances oriented downward)

to move in a vertical direction towards the cell culture atop the glass slide. Manual force is ap-

plied until the lance array contacts the glass slide substrate, thereby ensuring target cells have been

injected.
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3.2.3 Biologic Testing

Testing Preparation

HeLa 229 culture cells were incubated on glass slides contained in six well plates (Sarstedt)

at 37C and 5% carbon dioxide cultured in Dulbeccos Modified Eagles Medium (DMEM, Gibco)

with 10% Fetal Bovine Serum (FBS, Denville Scientific) and Gentamicin (Sigma-Aldrich). Cells

were allowed to adhere to a glass slide over a 24 hour period prior to testing. At the time of testing,

the cell cultures had formed a mono-layer of approximately 70% confluency or cell density across

a 1 cm diameter area centrally located on the glass slide

Following the 24 hr incubation test prep period, the six well plates containing the cultured

cells were removed from the incubator and had DMEM/FBS growth media removed and then cells

were rinsed in 1 mL per well of Hanks Balance Saline Solution (HBSS, Gibco). The respective

treatment protocols detail specific treatments applied to the wells from this point forward.

Lance Geometry Experimental Design

The following describes the various well types:

• Non-Treated Control (NTC): Following the addition of HBSS, no treatment was performed

on this well.

• Background PI Control (BC): Received 80 µL of PI solution (concentration: 500 µg of

PI powder per mL PBS) per 1 mL of HBSS in injection well, no lancing, and no further

treatment.

• Treatment Protocol Lancing (FN, FW, or P): Received 80 µL of PI solution (concentra-

tion: 500 µg of PI powder per mL PBS) per 1 mL of HBSS in injection well, lanced using

a either a Flat, Narrow (FN); Flat, Wide (FW); or Pointed (P) lance array using the injec-

tion device described above. The injection device was inserted into each well and manual

force was applied for five seconds to depress the lance array into the cell culture. Following
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the lancing, the injection device was removed from the well. No voltage was used, so that

random diffusion was responsible for transporting PI through the opened pores into the cells.

Lance Coating Experimental Design

As noted in the Test Preparation, HeLa 229 cells were cultured on a glass slide 24 hrs before

testing. Additionally, these glass samples were placed on top of a stainless steel flat plate during

this incubation process. This plate serves as the counter-electrode during testing. Each six well

plate had one non-treated control well, a background PI control well, and four treatment wells.

Directly following incubation, media was removed from the wells, each well was washed

with HBSS solution, and 2 mL HBSS solution was added to each well as an injection medium

preparatory to LAN.

The following describes the various well types. Note that each treatment protocol was

performed on both carbon coated lance arrays (CC) and non-coated silicon lance arrays (Si).

• Non-Treated Control (NTC): Received no PI in injection solution, no lancing, and no volt-

age.

• Background PI Control (BC): Received 40 µL of PI solution (concentration: 500 µg of PI

powder per mL PBS) per 1 mL of HBSS in injection well, no lancing, and no voltage.

• Treatment Protocol (CC/0V or Si/0V): Received 40 µL of PI solution (concentration: 500

µg of PI powder per mL PBS) per 1 mL of HBSS in injection well, lanced for 5 seconds,

and no voltage applied. These treatment samples were used to evaluate the diffusion rate of

PI through the patent cell membrane.

• Treatment Protocol: +1.5V DC (CC/1.5V DC or Si/1.5V DC) Received 40 µL of PI

solution (concentration: 500 µg of PI powder per mL PBS) per 1 mL of HBSS in injection

well. Injection process occured as: lances lowered into six-well plate with −1.5V applied

for 20 seconds to attract PI to lances, physical lancing of cell membranes, +1.5V applied for

5 seconds to repulse PI from the lances, and then removal of lances from cell.
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• Treatment Protocol: +5V Pulsed (CC/5V Pul or Si/5V Pul) Received 40 µL of PI solution

(concentration: 500 µg of PI powder per mL PBS) per 1 mL of HBSS in injection well.

Injection process occured as: lances lowered into six-well plate with −1.5V applied for 20

seconds to attract PI to lances, physical lancing of cell membranes, followed by ten pulses

between +1.5V and +5V applied within 20 ms, +1.5V DC applied for 5 seconds to repulse

PI from the lances, and then removed from cells.

3.2.4 Propidium Iodide

In designated treatment wells, propidium iodide (PI, Sigma-Aldrich), a dye that is both

impermeable to an intact cell membrane and fluoresces 20 to 30 times greater when intercalating

with nucleic acid base pairs, was used as an indicator for nanoinjection efficacy. Because the

nanoinjection process induces a physical pore to form as a result of being lanced, PI positive,

living cells are qualified as successful transfection events. Quantification of test wells using PI (as

well as control samples) is handled using flow cytometry.

For both experiments, a PI solution was prepared at a concentration of 500 µg of propidium

iodide powder per 1 mL of PBS. Because large differences in PI+ uptake were desired for the

Lance Geometry experimentation, because PI+ uptake is dependent only on diffusion, 80 µL of PI

solution was placed in each 1 mL of HBSS prior to injection. For Lance Coating experimentation,

an equivalent of 40 µL of PI solution was placed in each 1 mL of HBSS prior to injection, half

the concentration used in the Lance Geometry experiment because other factors are believed to

contribute to PI+ uptake.

3.2.5 Post Testing Flow Cytometry Preparation

After specific testing protocols were run, all samples were treated with 0.5 mL of 5X

Trypsin (Gibco) and incubated for 5 min to remove the cells from the glass slide after which each

well was treated with 1 mL of DMEM/FBS media to deactivate the trypsin. The samples were then

transferred to FACS tubes (BD BioSciences) for centrifugation for 10 min at 2000 rpm. Following

centrifugation, supernatants were removed and remaining cells were re-suspended in 0.25 mL of

PBS for final preparation prior to flow cytometry.
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3.2.6 Flow Cytometry

Following flow cytometry preparation, the samples were qualified using flow cytometry

(BDCanto) to determine the cell viability (living vs dead cells) and PI uptake (fluorescing vs non-

fluorescing cells). Each sample examined had approximately 10,000 events counted and char-

acterized. Post flow processing occurred in respective analysis softwares (BD FACS Diva-Dako

Summit) to visualize samples.

3.2.7 Statistical Analysis

Data gathered from the post flow analysis in Summit was used to calculate the percentage

and cell count of living cells contained in the total cell population, also referred to as cell viability,

as well as the percentage and cell count of the PI+ cells contained in the living cell population, also

referred to as PI+ uptake.

Following this post processing, data sets were compared statistically initially using ANOVA

testing to characterize presence of statistically significant relationships [123] followed by two-

sided student t-tests (α = 0.05) using JMP (SAS).

3.3 Results and Discussion

3.3.1 Lance Geometry Experimentation

Figure 3.5 shows a box-and-whisker plot of the percent of living cells in the total cell

populations, or cell viability, for the Lance Geometry experiment. Accompanying this figure is

Table 3.1, which provides statistically significant p-values for the comparision of the associated

sample types. Among treatment groups, FN had a significantly higher cell viability than FW and

P groups, albeit the difference in mean viabilities is <3% (see Table 3.2). For all comparisons

involving the treatment groups vs. both NTC and BC controls, statistically significant differences

are noted.

Figure 3.6 shows a plot of the percent of PI+ cells found in the living cell populations, or

PI+ uptake, for the Lance Geometry experiment. Table 3.1 also shows the associated p-values. For

treatment group comparisons, the FN group was significantly lower than both FW and P groups,
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Table 3.1: Lance Geometry Experimentation: P-values for comparing percentage of living
cells in total cell population and PI+ cells in living cell population

Comparisons % Total Cell Pop. that is Living % Living Cell Pop. that is PI+
NTC vs BC 0.8682 <0.0000
NTC vs FN <0.0000 <0.0000
NTC vs FW <0.0000 <0.0000
NTC vs P <0.0000 <0.0000
BC vs FN <0.0000 <0.0000
BC vs FW <0.0000 <0.0000
BC vs P <0.0000 <0.0000
FN vs P <0.0000 <0.0000

FN vs FW 0.0087 <0.0000
FW vs P 0.3422 0.5441

having a difference in mean PI+ uptake between P group of nearly 15% (see Table 3.2). Similar to

cell viability for Lance Geometry experimentation, the PI+ uptake for all treatment groups vs both

NTC and BC controls are stastically significant.
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Figure 3.5: Cell Viability results for Lance Geometry Experimentation are represented as the per-
cent of living cells in the total cell population for respective sample types. Table 3.1 shows statis-
tically significant relationships for comparison between sample types.
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Figure 3.6: PI Uptake results for Lance Geometry Experimentation are represented as the percent
of PI positive cells in the living cell population for respective sample types. Table 3.1 shows
statistically significant relationships for comparison between sample types.

Table 3.2: Lance Geometry Experimentation: Sample Size and Mean Value Summary

Sample Type n % Cell Viability (CV) CV Cell Count % PI Uptake (PI) PI Cell Count
NTC 15 95.52% 167,166 0.33% 583
BC 17 95.69% 167,452 26.71% 46,735
FN 40 91.73% 160,529 60.11% 105,195
FW 40 90.08% 157,640 73.50% 129,213
P 80 89.57% 156,745 75.08% 131,996

The Lance Geometry findings in regards to cell viability are suggestive of how the cell

membrane reacts to surface defects. In reference [124], it was shown that a blunt tip AFM probe

measuring 800 nm in diameter required more than three times less force to penetrate human epider-

mal melanocytes as opposed to a probe with the same diameter but with a pointed tip (Penetration

Force for Blunt tip: 0.67 nN, Penetration Force for Pointed tip: 1.90 nN). Furthermore, it was

shown that an AFM tip measuring 200 nm in diameter with a blunt tip required a penetration force

of 0.65 nN, suggesting that penetration force is less dependent upon diameter of probe and more

dependent upon the tip being blunt or pointed. By comparison, we have previously shown [125]
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using lance array nanoinjection that an average of 2.3 µN per lance is required to puncture HeLa

cell membranes using pointed lances. In our study, we quantified the force per lance required to

maximize PI delivery into the cells, which may be different than the force required for a single

lance to pierce the cell membrane

Given this basis, it was anticipated that with FW and FN lance types a lower amount of

cellular disruption would occur because less force would be required to penetrate, resulting in

higher cell viability rates. However, in this experiment, cell viability rates were only significantly

higher for the FN vs FW and P cases. Even so, the cell viability differences for FN and FW were

<3% different than P samples.

A possible explanation for the difference between reference [124] and this work deals with

the fact that the AFM experimental results were force controlled. The LAN process used in this

study was not force-controlled (particularly on the order of nN), and therefore membrane pene-

tration mechanics and cell viability may be irrelevant in regards to geometry when there is such a

difference in force magnitude application.

In terms of PI+ uptake, the findings demonstrate that PI uptake is greatest in P treatment

samples (75.08%), followed closely by FW treatment samples (73.50%). The rationale for this

outcome is not clear. It was anticipated that the FW samples would have a larger PI+ uptake rate

than both the FN and P samples because the effective surface defect area created from FW lances

would be between 4 to 6.25 times greater. However, despite this fact, the comparison between FW

and P is not significant.

It is possible, in terms of the PI+ uptake for FW and P lances, that even though the P

shaft is smaller than the FW, that perhaps the way the cell membrane and underlying structures are

disrupted following injection with the pointed lance tip makes it more difficult for the cell to heal

the surface defect allowing more diffusion of PI across the membrane.

3.3.2 Lance Coating Experimentation

Figure 3.7 shows a plot of cell viability for the Lance Coating experiment and is further

summarized in Table 3.3 and Table 3.5 for statistical comparison. Noted in this comparison study

between the non-coated and the carbon-coated silicon lances is the lack of statistically signifi-

cant difference between the lance type groups when comparing similar testing conditions. One
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Table 3.3: Lance Coating Experimentation: P-values for comparing different sample types
in terms of Percentage of Living Cells in Total Cell Population

Sample Type NTC BC CC/0V Si/0V CC/1.5V DC Si/1.5V DC CC/5 V Pul
BC 0.6436

CC/0V 0.0308 0.0613
Si/0V 0.0201 0.0399 0.8644

CC/1.5V DC <0.0000 <0.0000 <0.0000 <0.0000
Si/1.5V DC <0.0000 <0.0000 <0.0000 <0.0000 0.2006
CC/5V Pul <0.0000 <0.0000 <0.0000 <0.0000 0.0806 0.7116
Si/5V Pul <0.0000 <0.0000 <0.0000 <0.0000 0.0358 0.4487 0.0077

exception to this observation is the comparison of CC/5V Pul to Si/5V Pul, where CC/5V Pul is

significantly higher by 5%. It is not clear why the CC/5V Pul has a higher cell viability rate in this

situation. It is possible that the difference is a function of the electrical exposure, and requires fur-

ther investigation. Also seen in these results is the gradual decrease in cell viability as the amount

of electrical exposure increases when referenced by NTC and BC controls, regardless of lance

type.

Figure 3.8, Table 3.3, and Table 3.5 present the PI+ uptake for the two lance coating types.

Notably, there are no statistically significant relationships between the CC and Si lance array types

when similar testing conditions exist, suggesting no advantage is gained by carbon coating the

lance array.

Although not the focus of the lance coating experimentation, also shown in these re-

sults is that electrical application can increase significantly PI+ uptake (ie. see comparison of

CC/0V:CC/1.5V DC and Si/0V:Si/1.5V DC) as well as cause a decrease in PI+ uptake (ie. see

comparison of CC/1.5V DC:CC/5V Pul and Si/1.5V DC:Si/5V Pul). The later comparison sug-

gests that perhaps electrically pulsing the lances once inserted into the cell has an adverse effect

either in terms of PI+ release directly and/or cell viability, which in turn reduces the number of PI+

living cells.

3.4 Conclusion

Improving the delivery of molecular loads to target cells is a critical part of integrating

meaningful biologic discovery with clinical and benchtop application. The primary goal for LAN
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Figure 3.7: Cell Viability results for Lance Coating Experimentation are represented as the percent
of living cells in the total cell population for respective sample types. Table 3.3 shows statistically
significant relationships for comparison between sample types.

Table 3.4: Lance Coating Experimentation: P-values for comparing different sample types
in terms of Percentage of PI+ Cells in Living Cell Population

Sample Type NTC BC CC/0V Si/0V CC/1.5V DC Si/1.5V DC CC/5 V Pul
BC <0.0000

CC/0V <0.0000 0.0186
Si/0V <0.0000 0.0242 0.8980

CC/1.5V DC <0.0000 <0.0000 <0.0000 <0.0000
Si/1.5V DC <0.0000 <0.0000 <0.0000 <0.0000 0.8613
CC/5V Pul <0.0000 <0.0000 <0.0000 <0.0000 0.0060 0.0112
Si/5V Pul <0.0000 <0.0000 <0.0000 <0.0000 0.1716 0.2399 0.1619

as a transfection technology is to effectively deliver molecular loads without compromising cell

viability. Since LAN relies both on physical and electrical interactions with target cells, structural

design and function of the microfabricated silicon lances are closely wrapped together.

Investigated in this work are two parameters, lance geometry (tip shape and shaft diameter)

and coating, believed to impact the ability of a non-viral transfection technology, known as Lance

Array Nanoinjection, to deliver propidium iodide to the intracellular space of HeLa 229 cells.
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Figure 3.8: PI Uptake results for Lance Coating Experimentation are represented as the percent
of PI positive cells in the living cell population for respective sample types. Table 3.4 shows
statistically significant relationships for comparison between sample types.

Table 3.5: Lance Coating Experimentation: Sample Size and Mean Value Summary

Sample Type n % Cell Viability (CV) CV Cell Count % PI Uptake PI Uptake Cell Count
NTC 28 95.84% 167,726 0.17% 295
BC 40 94.85% 165,985 24.84% 43,466

CC/0V 52 91.29% 158,836 31.24% 77,886
Si/0V 48 90.98% 158,400 30.91% 81,329

CC/1.5V DC 35 81.15% 147,297 51.29% 64,581
Si/1.5V DC 33 78.42% 143,154 50.75% 65,668
CC/5V Pul 48 81.87% 144,076 43.57% 88,583
Si/5V Pul 43 76.86% 136,697 47.31% 87,540

Findings indicate two major items in terms of lance geometry. First, FN lances produce a

slightly higher cell viability rate (91.73%) than the other two lance geometries (FW: 90.08%, P:

89.57%). Second, P lances produce the highest PI uptake rate of 75.08%.

Lastly, findings related to the carbon coating of the silicon lances (CC) demonstrate that

neither cell viability or PI uptake rates are increased when comparing to non-coated lances (Si)

during both non-voltage and voltage injection events.
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Given the fact that cell viability rates of all lance geometries are nearly 90% and that greater

PI uptake was seen with P lances, it appears that using P shaped lances would be the recommended

geometry for future nanoinjection experiments. Noted earlier was the fact that lance shape does

not necessarily translate to degree of cellular trauma detectable in post-injection flow cytometry

analysis. Future histological investigation of cellular structures post-injection may be warranted in

the context of lance geometry to determine if lance shapes influence cellular damage and/or cell

viability.

While the electrical effects of the carbon coating on the silicon lances proved to be incon-

sequential, it is still of interest to characterize other microfabricated lances in terms of the effects

of electrical behavior during LAN. Future investigation in this area may include similar testing

protocols with alternative materials used for lance arrays, such as carbon nanotubes.
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CHAPTER 4. TRANSIENT LOW TEMPERATURE

The following chapter has been submitted as a journal article to the Journal of Nanotechnology in

Engineering and Medicine and is currently in review. The title of this journal article is “Transient

Low Temperature Effects on Propidium Iodide Uptake in Lance Array Nanoinjected HeLa Cells”.

As a result, there may be some material that is contained elsewhere in this dissertation but is

presented here as a representation of this original journal article.

4.1 Introduction

Biologic engineering applications utilizing specific cell lines and/or entire organisms have

been accelerated by the use of programmable endonucleases such as zinc-fingers (ZFNs) [126],

transcription activator-like effector nucleases (TALENs), and clustered interspaced short palin-

dromic repeats and associated cas9 (CRISPR-Cas9) [127–129]. These tools present researchers

with a large degree of freedom in designing site-specific modifications to the genome. The ability

to directly insert [130,131], activate [132–134], repress [132,135], and/or knock-out [97] genes at

multiple sites, even in a single transfection event [136–138], is now possible.

Further fueling excitement in regards to genetic engineering is the ability to direct these and

related technologies towards mitigating and controlling disease processes. Specifically, therapies

are being directed at treating both human monogenic diseases such as lipoprotein lipase deficiency

(LPLD) [4], leber cogenital amaurosis (LCA) [5–9], and hemophilia B [10, 11] as well as more

genetically complex diseases such as heart failure [12–15], B-cell malignancies [16], and neu-

rodegenerative diseases [17] using exogenously deliverd genetic material to alter aberrent cellular

behaviors.

While the ability to modify target cells has dramatically improved, the ability to physically

deliver these effector molecules to target cells is still constrained in many ways. What makes it

challenging for transfection methods to achieve successful transformation is that there are barriers
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that inhibit molecular delivery and can be described as barriers related either to physical or physio-

logical elements of cellular targets. In the context of physical barriers, molecular loads must cross

both the cell membrane and cell nucleus before genomic modification can be achieved.

In the past, engineered viruses have been an attractive option for overcoming genetic deliv-

ery to target cells because viruses have cell adhesion proteins that help transport the virus across

the cell membrane [111–114]. When coupled with the tropic ability of viruses to target specific cell

types within a mixed population such as blood, researchers have been able to achieve benchmark

transfection rates.

Despite these strengths, viral transfection methods have limitations that make widespread

application difficult, especially in the clinical setting. Weaknesses in regards to viral transfection

include: immunologic safety, viral containment to target tissues, limits to genetic load capacity,

and potential insertional mutagenesis [116]. Because of these drawbacks researchers have sought

alternative, non-viral modalities for molecular delivery [117].

4.1.1 Nanoinjection

One of these non-viral transfection technologies has been described in the literature as a

process called nanoinjection [25, 26]. Originally designed to facilitate transgenic mouse embyro

modification, a second generation of nanoinjection technology has been developed that is designed

to modify hundreds of thousands of somatic cells simultaneously [24]. This second generation

nanoinjection process is called lance array nanoinjection (LAN) because it utilizes an array of mi-

crofabricated silicon lances measuring 10 microns in length, spaced every 10 microns to facilitate

both the physical piercing and electrical manipulations required for LAN (see Figure 4.1).

Procedurally, LAN occurs in four major steps, which include: staging the lance array in

an injection solution containing the molecular load of choice, electrical attraction of the molecular

load onto the lance structure, physically lancing of the cell culture–effectively placing the molec-

ular load attached to the lance in the cells’ cytoplasm and electrically repulsing the molecular load

into the intracellular space of the cell, and retraction of lances from cell culture [24].

Prior nanoinjection research has focussed on intrinsic variables specific to nanoinjection in

terms of both modelling and experimentation of electrical parameters effecting delivery of molec-
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ular loads, particularly DNA [50,139,140]. This work seeks to expand that perspective by investi-

gating the thermal environmental effects on target cells undergoing LAN.

4.1.2 Cell Membrane in Response to Transient Low Temperature

Because LAN, like all other non-viral transfection methods, relies on cell membrane me-

chanics for molecular transport into the cell’s cytoplasm, it is critical that factors related to the cell

membrane behavior be well understood. One particularly important environmental stressor that

alters membrane function is sub-physiologic temperature (i.e., <37◦C) [141–154].

4.1.3 Cell Membrane Stiffening at Low Temperature

In general terms, the mammalian cell membrane is constructed of a phospholipid bilayer

containing protein aggregates and carbohydrates with regions of cholesterol rich domains, which

play an important part in membrane transport as it relates to temperature [142, 143]. Al-Fageeh

et al. [141] notes that with in vitro reduction in temperature, rigidity of the membrane increases

as internal hydrophobic portions of the phospholipids begin to pack more closely, increasing the

stiffness of the membrane structure [143].

In order to mitigate this effect, many cellular systems will attempt to maintain a constant

degree of membrane fluidity in the face of reduced temperature, an idea known as homeoviscous

adaptation. In order to facilitate this goal during cold stress, the cell initiates activity of fatty

acid desaturase and dehydrases to convert saturated fatty acids to poly-unsaturated fatty acids,

effectively reducing the length of the chain and increasing fluidity of the membrane [141,144–148].

Although these measures do attempt to mitigate the stiffening of the cell membrane, it does not

altogether prevent stiffening when exposed to reduced temperature [143].

4.1.4 Diminished Cytoskeleton at Low Temperature

While the cell membrane itself is structurally stiffer with reduced temperature, atomic force

microscopy studies indicate that the overall integrity of the cell decreases in stiffness as temperature

decreases [149–151]. This behavior is caused by the disassembly of the underlying cytoskeleton

which serves as a structural scaffold that runs throughout the intracellular space of the cell.
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Figure 4.1: SEM image of Lance Array Silicon chip. Lances measure 10 microns in height, 1-2.5
microns in diameter, with a 10 micron spacing

This fact becomes relevant in terms of LAN because the cytoskeleton plays a critical role

in cell membrane wound healing. When surface damage occurs to the cell membrane, the cy-

toskeleton facilitates actinomyosin contraction and recruiting of repair machinery to the damaged

site [152–154], a function that is hypothesized to be impaired at low temperature because of re-

duced cytoskeleton presence.

The purpose of this work is to characterize the behavior of HeLa 229 cells in response to

transient low temperature (3◦C) relative to warmer samples (23◦C) following lance array nanoin-

jection (LAN). It is hypothesized that because the cell membrane is stiffer and the cytoskeleton is

compromised (and thereby functionally impaired) at low temperature, that pores created by LAN

will remain patent longer for samples treated at 3◦C than samples treated at 23◦C. To help char-

acterize this hypothesized thermal-dependent pore formation event, propidium iodide (PI, Sigma-

Aldrich), a dye impermeable to the cell membrane that fluoresces when interacting with nucleic

acids, will be added to injected cell cultures at various intervals post-injection. When the cells have

pores still present at the time of PI introduction into the sample solution, PI should pass through

the cell membranes of living HeLa cells, interact with nucleic acids, and fluoresce during flow

cytometry. Figure 4.2 illustrates this process, which is a variant to nanoinjection processes used in

the past [24].
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Staging: Injection Solution 

       set at 3C or 23C

Figure 4.2: Lance Array Nanoinjection Stepwise Process. 1: Staging lance array into injection
solution maintained at either 3◦C or 23◦C. 2: Injection of cell culture, consisting of both physical
penetration of the cell membrane and electrical treatment. 3: Staining of cell culture by introduc-
tion of PI into the extracellular solution at 0, 3, 6, and 9 minutes post-injection. 4: Induced pores
from injection event eventually close and PI molecules in the intracellular space of injected cells
interact with nucleic acids, increasing PI fluorescence.

4.2 Methods

4.2.1 Lance Array Fabrication

Microfabrication of the silicon lance array consists of four major steps, which include pat-

terning with positive photoresist (AZ330F), deep reactive ion etching (DRIE), a sulfur hexafluoride

(SF6) isotropic plasma etch, and a final cleaning step. More details of the microfabrication are con-

tained in prior work [23].
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4.2.2 Injection Set-Up

Nanoinjection Device and Electrical Switch Box

The nanoinjection device consists of six major elements which include: stepper motor,

orthoplanar spring, coiled spring, lance array holder, lance array, and electrical connection. The

rapid-prototyped, ABS (acrylonitrile butadiene styrene) orthoplanar spring has a stepper motor

attached superiorly that presses against a coiled spring that acts to move the orthoplanar spring

upward and downward. Attached to the orthoplanar spring apparatus at the inferior end is a lance

array holder that allows for the insertion and removal of the silicon-etched lance array. Gold con-

tacts were used to electrically connect the lance array to an electrical switch box (see Figure 4.3).

The electrical switch box, which is connected to the injection device, operates by receiving

2 input signals and switching between these at specific times. Treatment samples receiving electri-

cal treatment experience an initial −1.5V for 20 seconds, followed by insertion of the lances into

the cells, followed by a 20 ms interval of positive pulsed voltage (2 ms period, 50 percent duty

cycle), followed lastly by a 5 second interval of +1.5V.

During injection events typically performed using LAN, the initial negative voltage attracts

the molecular load to the lances and the positive pulses repel the PI into the cells [24]. For this

study the PI was added into solution after injection to help elucidate molecular mechanisms in

response to LAN. The electrical treatment was kept the same as what has been reported in the past

to allow for comparison [24].

Cell Culture Platform

The 3D printed Cell Culture Platform (MakerBot Replicator 2) consists of three parts—the

PLA (polylactic acid) base, glass slide, and the PLA top clip. The glass slide was used to provide

a flat, uniform culturing surface for the HeLa cells. This glass slide snap-fitted into the PLA

base. Once snapped into place, the top PLA clip was placed on the assembly to provide a uniform

base for the Nanoinjection Device described above to rest on during nanoinjection. In addition to

allowing for the glass slide to attach, the base also contains an exposed wire coil that serves as an

electrical ground. The addition of the 3D printed Platform was to help facilitate better alignment

of individual components that proved to be of value in preliminary testing (see Figure 4.4).
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Figure 4.3: Diagram of Nanoinjection Device. Components shown (top to bottom) include: Step-
per motor mounted to ABS orthoplanar spring, threaded screw acting to actuate silicon lance array
mounted above 3D printed Cell Culture Platform, and associated electrical connections (ground
connected to Cell Culture Platform).

Figure 4.4: Cell Culture Platform assembly. Glass slide containing cell culture secured between
the bottom PLA base and top PLA clip to provide proper alignment during injection.
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LAN Experimental 

        Set-Up

Nanoinjection Device 

Thermocouple

Electrical Inputs from WaveForm

  Generator and Power Supply

Electrical Outputs to 

Nanoinjection Device

LabView Program monitoring Electrical 

     Signals during Injection Process

Six-Well Plate 

Figure 4.5: Experimental set-up illustrating injections performed for 3◦C treatment samples. A
thermocouple was used to verify surrounding fluid temperature of ice/water bath of 3◦C prior to
treatment. LabView program was used to verify proper electrical signals delivered to Nanoinjection
Device. Six well plate containing Cell Culture Platforms and associated cell cultures were aligned
to Nanoinjection Device.

4.2.3 Propidium Iodide

In designated treatment wells, propidium iodide (PI, Sigma-Aldrich), a dye that is both

impermeable to an intact cell membrane and fluoresces 20 to 30 times greater when associated with

genetic material, was used as an indicator for nanoinjection efficacy. Because the nanoinjection

process induces a physical pore to form as a result of being lanced, PI positive, living cells are

qualified as successful modification events. Quantification of test wells using PI (as well as control

samples) is handled using flow cytometry.

4.2.4 Testing Preparation

HeLa 229 culture cells were incubated at 37C and 5% carbon dioxide cultured in Dul-

beccos Modified Eagles Medium (DMEM, Gibco) with 10% Fetal Bovine Serum (FBS, Denville

Scientific) and streptomycin/penicillin (Gibco). Six well plates were seeded with cell cultures and

allowed to adhere to a glass slide in conjunction with the 3D printed Cell Culture Platform over a

24 hour period, producing an approximately 70% confluent mono-layer of cells.
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Following the 24 hr incubation, the six well plates containing the cultured cells were re-

moved from the incubator and had growth media removed and then cells were rinsed in 1 mL

per well of phosphate buffered solution (PBS). The respective treatment protocols detail specific

treatments applied to the wells from this point forward.

As noted previously, cultured samples were prepared in the 3D printed PLA platform and

top clip components. Typical six well plates were organized to have a non-treatment control (no

voltage, no lancing, no PI), a backgroung PI control (only PI added), and the remaining wells for

treatments at two different test temperatures, room (23◦C) and ice (3◦C), at two different voltage

protocols.

In order to ensure the exposure of the cells to the different temperatures, six well plates were

given 20 min to come to temperature. For test samples exposed to ice temperatures, the six well

plates were placed in ice baths. This time frame was selected for the cold exposure because it was

determined that was the amount of time required to get the sample to 3◦C and longer-term exposure

to cold temperatures has been shown to induce cell cycle arrest, reduced energy production, and

activation of apoptosis [151, 155–157].

Figure 4.5 shows the experimental set-up used for injections. Equipment include a thermo-

couple (Fluke 51 K/J Thermometer) used for verifying amibent temperature of the injection fluid,

a waverform generator (Agilent 33220A) and power supply (Keithley 2400 Sourcemeter) for pro-

viding electrical input signals, an electrical switch box for controlling electrical signal delivery to

the nanoinjection device, a LabView VI (National Instruments) program used to monitor electrical

signal inputs, and the nanoinjection device with the associated six-well plate (Sarstedt) and cell

culture platforms.

Treatment Protocols

The following describes the various well types:

• Non-Treatment Control (NTC): Received no lancing, no applied voltage, and no PI. Non-

treated controls were generated for each temperature (23◦C and 3◦C).
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• Background Control for PI (BC): Received no lancing, no applied voltage. Received 0.02

mg/mL PI. Background PI controls were generated for each temperature (23◦C and 3◦C).

• Treatment Protocol +5V Pulsed: Lanced, and received applied voltage which consisted

of: 20 second application of −1.5 DC voltage, followed by 10 squarewaves pulsed between

+1.5V to +5V with a 2 ms period, followed by 5 seconds of a +1.5 DC voltage. These

treatment samples were generated for each temperature (23◦C and 3◦C). PI was finally added

at four different time intervals (0, 3, 6, and 9 min) measured from the time the when lances

were removed from the cells.

• Treatment Protocol +7V Pulsed: Lanced, and received applied voltage which consisted

of: 20 second application of −1.5 DC voltage, followed by 10 squarewaves pulsed between

+1.5V to +7V with a 2 ms period, followed by 5 seconds of a +1.5 DC voltage. These

treatment samples were generated for each temperature (23◦C and 3◦C). PI was finally added

at four different time intervals (0, 3, 6, and 9 min) measured from the time the when lances

were removed from the cells.

For convenience, specific treatment sample types will be referred to by temperature of

injection solution, pulsed voltage protocol used, and if requisite, the time interval at which PI was

introduced. For example, 3◦C/7V/T3 means a treatment sample that was injected in a solution at

3◦C using a 7V pulsed voltage protocol and the specific time PI was added was 3 minutes post-

injection.

4.2.5 Post Testing Flow Cytometry Preparation

After specific testing protocols were run, all samples were treated with 0.5 mL of 5X

Trypsin (Gibco) and incubated for 5 minutes for removal of cells from the glass slide. Once the

HeLa cells were removed, each well was treated with 1 mL of DMEM/FBS media to deactivate

the trypsin. The samples were then transferred to FACS tubes (BD BioSciences) for centrifugation

for 10 min at 2000 rpm. Following centrifugation, supernatants were removed and remaining cells

were re-suspended in 0.25 mL of PBS for final preparation prior to flow cytometry.
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d. 5V Pulsed, 23C Treatment 

e. 5V Pulsed, 3C Treatment

c. Background Control for PI

f. 7V Pulsed, 23C Treatment 

g. 7V Pulsed, 3C Treatment

b. Non-Treatment Control 

a. FSC/SSC with Gating 

Figure 4.6: Flow cytometry examples of six different sample types explored in this experiment.
a) Demonstrates how cells were gated for Living Cells from forward and side-scatter signals. b-
g) Represents gating of living cells based on signal intensity of samples from blue-laser 2 sensor
(BL-2). Note: The threshold for PI+ signals was determined from non-treated control samples and
is used globally to determine PI+ cells in treatment samples.

4.2.6 Flow Cytometry

Following flow cytometry preparation, the samples were qualified using flow cytometry

(Attune Acoustic Focusing Flow Cytometer, Life Technologies) to determine the cell viability and

PI uptake. Each sample examined had approximately 10,000 events counted and characterized.

Post flow analysis occurred in Attune Cytometric 2.1 (Applied Biosystems, Life Technologies) to

visualize, gate desired cell populations, and develop primary level data for each sample. Figure 4.6

helps to demonstrate how these cell populations were gated and quantified.
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4.2.7 Statistical Analysis

Data gathered from the post flow analysis in Attune was statistically analyzed in JMP

(SAS). Prior to analyses, treatment samples were normalized relative to both non-treated control

and background PI control samples at room temperature. Specifically, normalized cell viability

and propidium iodide (PI) uptake was calculated according to:

a =
Living Cells in Test Sample

Total Living and Dead Cells in Test Sample

b =
Living Cells in Non−Treated Control

Total Living and Dead Cells in Non−Treated Control

Normalized Cell Survival =
a
b

c =
Living and PI+ Cells in Test Sample
Total Living Cells in Test Sample

d =
Living and PI+ Cells in Backgroun PI Control
Total Living Cells in Backgroun PI Control

Normalized PI Uptake =
c
d
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This normalization step was used to help control for confounding variables particular to

individual six-well plates.

Following both PI Uptake and Cell Viability Normalizations, data sets were compared sta-

tistically using ANOVA and student t-tests. Further analysis was conducted to evaluate statistical

significance using the more conservative methods by using the permutation testing in JMP (1000

iterations, two-sided p-value) [158]. Additionally, linear combinations statistical methods were

used to examine whether 3◦C samples as a whole were statistically different from 23◦C samples.

Using the same criteria, sample sets were also contrasted using linear combinations for examining

whether 5V samples as a whole were statistically different from 7V samples.

4.3 Results and Discussion

4.3.1 Normalized PI Uptake

Figure 4.7 shows a collection of box-plots showing the respective data for each sample

set and relative statistically significant relationships following permutation analysis. Analysis of

the 3◦C/7V Pulsed samples shows a statistically significant difference (two-sided p-value) with

both 23◦C/5V Pulsed and 23◦C/7V Pulsed samples at all times, with the exception of the 6 min

comparison between 3◦C/7V Pulsed and the 23◦C/5V Pulsed. Furthermore, in both the 3 and 9

minute comparisons, 3◦C/7V sample sets are significantly different from 3◦C/5V Pulsed samples.

Shown in the Table 4.1 and Table 4.2 are corresponding values for the two-sided p-values attached

to the comparison of samples at each time interval for both PI uptake and cell viability. (See

Figure 4.7)

Shown in Figure 4.8 are sample population means for each sample type relative to the time

post-injection when the samples had PI added. Figure 4.8 illustrates three key findings. First, all

treatent samples demonstrate an increase in normalized PI uptake for samples from 0 minutes to

3 minutes followed by a decrease from 3 minutes to 6 minutes. With the exception of the 3◦C/5V

Pulsed samples, all samples measured a more minor secondary increase in normalized PI uptake

from 6 minutes to 9 minutes.

Second, both colder samples have higher degrees of normalized PI uptake than the 23◦C

sample types, with the 3◦C/7V Pulsed samples having the highest overall magnitude of PI uptake
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d. Normalized PI Uptake, t = 9 min Post-Injection

3C/5V/T0 3C/7V/T0 23C/5V/T0 3C/7V/T33C/5V/T3 23C/5V/T3

3C/7V/T63C/5V/T6 23C/5V/T6 3C/7V/T93C/5V/T9 23C/5V/T9

b. Normalized PI Uptake, t = 3 min Post-Injection

c. Normalized PI Uptake, t = 6 min Post-Injection

a. Normalized PI Uptake, t = 0 min Post-Injection

Figure 4.7: Box Plots of Normalized Propidium Iodide Uptake for all sample types, grouped ac-
cording to post-injection time when PI was added. Statistically significant relationships based on
the permutation testing are indicated with a star.

with the exception of the nearly comparable value it shares with the 3◦C/5V Pulsed samples at 6

minutes.

Lastly, the ordering of the sample types by degree of PI uptake indicates that the 3◦C/7V

Pulsed samples had the greatest PI delivery efficiency, while the 23◦C/7V Pulsed samples had the

lowest PI delivery efficiency.(See Figure 4.8)
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Figure 4.8: Mean Normalized PI Uptake for all sample types through time.
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Figure 4.9: Mean Normalized Cell Viability for all sample types through time.
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Table 4.1: Normalized PI Uptake Efficiency P-Values for Thermal Testing

Comparisons 0 Min Delay 3 Min Delay 6 Min Delay 9 Min Delay
23◦C/5V vs 23◦C/7V 0.109 0.145 0.235 0.321
23◦C/5V vs 3◦C/5V 0.512 0.168 0.192 0.648
23◦C/5V vs 3◦C/7V 0.207 0.001 0.297 0.031
23◦C/7V vs 3◦C/5V 0.003 0.006 0.005 0.123
23◦C/7V vs 3◦C/7V 0.001 0.000 0.014 0.005
3◦C/5V vs 3◦C/7V 0.402 0.005 0.932 0.026

Table 4.2: Normalized Cell Viability Efficiency P-Values for Thermal Testing

Comparisons 0 Min Delay 3 Min Delay 6 Min Delay 9 Min Delay
23◦C/5V vs 23◦C/7V 0.087 0.000 0.599 0.173
23◦C/5V vs 3◦C/5V 0.055 0.086 0.397 0.859
23◦C/5V vs 3◦C/7V 0.868 0.923 0.655 0.739
23◦C/7V vs 3◦C/5V 0.000 0.000 0.037 0.048
23◦C/7V vs 3◦C/7V 0.012 0.000 0.941 0.011
3◦C/5V vs 3◦C/7V 0.025 0.084 0.099 0.467

4.3.2 Normalized Cell Viability

Figure 4.9 are sample population means for the normalized cell viability for each sample

type at the different times post-injection. This graph demonstrates an effective range of cell vi-

ability of 63% (3◦C/5V Pulsed at t = 3 min) to 99% (23◦C/7V Pulsed at t = 3 min). With the

exception of 23◦C/7V Pulsed samples, it appears that cell viability decreases from 0 to 3 minutes

post-injection, followed by an increase during 3 to 6 minutes.

4.3.3 Temperature and Pulsed Voltage Contrasts

Table 4.3 illustrates p-values related to the linear combinations of temperature contrast.

First, in the context of temperature contrast between 23◦C and 3◦C samples, it appears that cell

viability is significantly different during the first two sample intervals (T0 and T3), favoring sam-

ples exposed to warmer conditions. The PI uptake for this same comparison also indicates that the

colder samples had significantly higher levels for all time intervals investigated.
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Table 4.3: Linear Combination P-Values for Temperature Contrast

Comparisons 0 Min Delay 3 Min Delay 6 Min Delay 9 Min Delay
Cell Viability: 23◦C vs 3◦C 0.002 0.000 0.462 0.198

PI Uptake: 23◦C vs 3◦C 0.003 0.000 0.005 0.004

Table 4.4: Linear Combination P-Values for Voltage Contrast

Comparisons 0 Min Delay 3 Min Delay 6 Min Delay 9 Min Delay
Cell Viability: 5V vs 7V 0.002 0.000 0.066 0.241

PI Uptake: 5V vs 7V 0.730 0.357 0.819 0.199

Table 4.4 shows pulsed voltage comparison using the same method. It appears that there

is a significant difference for the first two time intervals (T0 and T3) in terms of cell viability,

favoring the samples that experienced higher pulse voltages. PI uptake is not significantly different

for the voltage comparison criteria at all time intervals investigated.

The results suggest several cellular response mechanics in regards to concomitant thermal

stress and surface structural dysruption. Discussed earlier were the effects that lower physiolog-

ical temperature has on target cells in regards to the cell membrane/material stiffening as well as

diminished cytoskeletal support leading to reduced surface defect healing.

4.3.4 Surface Defect Healing

In the context of surface defect healing, Figure 4.8 shows a decrease in PI uptake between

3 and 6 minutes post-injection for all treatment sample types. This suggests that large numbers of

induced pores are closing in some degree during this time period. Notably, because the lance arrays

are designed to create approximately the same number of pores in each injected well, it is suggested

by the larger decrease in PI uptake for the 3◦C samples over this interval that surface defect healing

rate is greater during cold stress. However, it also suggests that while the magnitude of induced

pore closure rate may be greater in the 3◦C samples during 3 to 6 minutes post-injection, that the

23◦C samples have a lower number of pores still patent after this event. In the initial hypothesis,

it was believed that colder samples would have stiffer membrane material properties and therefore
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have a greater number of pores patent for a longer period of time. Statistically, this relative behavior

between temperatures can be viewed in Table 4.3.

To help corroborate the conclusion that the major pore closing event occurs between 3 to

6 minutes post-injection, Figure 4.9 illustrates that over the same time period, cell viability levels

increase, with the exception of the 23◦C/7V Pulsed sample which experiences a modest decrease

in cell viability (approximately 5%). A likely explanation is that as induced pores begin to close,

manifested in terms of reduced PI uptake, the transmembrane ion gradients that were dysrupted by

the injection event begin to stabilize and thereby improve cell survival.

Returning to Figure 4.8 and the suggested pore-closure events occurring in all sample types

between 3 to 6 minutes post-injection, it is worth noting these findings in terms of the original hy-

pothesis regarding cytoskeletal function in surface defect healing. It was originally hypothesized

that at the reduced temperature, cytoskeletal integrity would be diminished and thereby the func-

tional ability of the cell to repair surface defects would be reduced. However, that behavior is not

seen in Figure 4.8 in terms of a lag time in pore closure with the 3◦C samples. A possible reason

that behavior is not found may deal with the fact that reduced temperature exposure to treatment

samples was transient enough to not adversely diminish cytoskeletal structure/function.

4.3.5 Temperature-Dependent Ion Re-Balancing

One particular behavior that is also suggested in Figure 4.8 is a temperature-dependent re-

balancing of ion gradients during the post-injection period. Early in the experimentation of this

work, it was anticipated that the cell would experience a temperature-dependent re-balancing due

to the decreased production of ATP at lower temperature, a behavior noted in other mammalian cell

types at approximately 3◦C [159]. The propidium iodide molecular load used post-injection was

thought to be actively removed via membrane bound ATP-driven pumps [160]. When PI is added

to the post-injected solution, while the target cells are still re-establishing ion gradients due to the

multiple (2-4 pores per cell) 1-2.5 micron-sized pores, it is believed that the PI and transiently

mis-placed ions would be removed from the intracellular space via ATP-pumps. Demonstrated in

Figure 4.8 is that the 3◦C samples at all time periods post-injection, had greater levels of PI still

present in the intracellular space, suggesting that ATP production is reduced with lower tempera-

ture, therefore reducing PI removal from the cell as well.
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In context of the two voltage protocols used during the LAN event, there appears to be

no clear pattern as far as PI uptake is concerned as noted in Table 4.4. In terms of the injection

process, this finding is not surprising since because PI was not yet added to the solution until after

the injection process.

4.3.6 Minor PI Uptake Rebound

Figure 4.8 shows during 6 to 9 minutes post-injection, that all samples (except 3◦C/5V

Pulsed samples) experience a rebound in the degree of PI uptake. Treatment sample 3◦C/7V Pulsed

experience the greatest rebound in PI while 23◦C/5V and 23◦C/7V Pulsed samples experience a

more comparable level of PI uptake rebound. The timing and degree for this behavior is not clear.

4.3.7 Cell Survival with Large Surface Defect

To the authors’ knowledge, this is the first time pores formed with such a large diameter

(approximately 2.5 microns in diameter, 2-4 per cell) in the presence of the thermal stress has

been conducted in context of cell survival. Remarkedly, even in the presence of such relatively

large compromises to the cell structure, these cell cultures still maintain an average cell viability

of 78.08% for 3◦C samples and 89.61% for 23◦C samples.

4.4 Conclusion

Characterizing cell culture environmental factors and the role they play in alterations to

structural and functional behavior of target cells is a critical foundational research topic for en-

hancing non-viral transfection technologies. Presented here is a non-viral transfection technology

known as Lance Array Nanoinjection (LAN), a method that relies on both physical penetration

of the cell membrane and electrical delivery of charged molecular loads. Experimentally, it was

shown that LAN in the presence of thermal variation delivers greater amounts of propidium iodide

to target cells when samples are cooled to 3◦C rather than maintained at 23◦C. Furthermore, it is

suggested in this work that HeLa cells respond uniquely in regards to pore closure 3 to 6 minutes

post-injection and that despite the surface damage from the injection, they maintain average cell

viability rates between 78.08% and 89.61% for 3◦C and 23◦C treated samples, respectively.
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CHAPTER 5. INJECTION SPEED AND SERIAL INJECTION

The following chapter has been submitted as a journal article to SpringerPlus and is currently in

review. The title of this journal article is “The Effect of Injection Speed and Serial Injection on

Propidium Iodide entry into Cultured HeLa and Primary Neonatal Fibroblast Cells using Lance

Array Nanoinjection”. As a result, there may be some material that is contained elsewhere in this

dissertation but is presented here as a representation of this original journal article.

5.1 Introduction

Gene therapy and gene medicine approaches to correcting disease represent a major paradigm

shift in how clinicians are able to help patients, moving from a framework of reactionary treatment

of disease manifestations to fundamental, proactive prevention of genetic alterations causing the

disease [1–3]. While still in a relatively early stage of development, medical approaches designed

to engineer genetic outcomes have had promising results in terms of both monogenic [4–11] and

polygenic [12–17] disease corrections.

Unfortunately, the actual method for transmission of the genetic loads to target cells re-

mains a challenge [18–21]. Many biotechnologies have been created to help address this issue

(with mixed results) [22, 161–165]. The primary goal of all of these methods is to site-direct ge-

netic loads into cells without harming the host systemically or the target cell locally [18]. Key

features frequently noted as critical design requirements for these biotechnologies include:

• High transfection efficiency

• Effective in a wide range of cell types

• Flexible pay load capacity

• No immunologic response
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Figure 5.1: SEM image of two rows of lances contained on the Lance Array Silicon chip. Lances
measure 10 µm in length, 1-2.5 microns in diameter, and spaced 10 µm from center to center

• No insertional mutagenesis

One non-viral transfection biotechnology, known as Lance Array Nanoinjection (LAN),

has been created with these design requirements in mind. LAN works by using a combination of

physical penetration of target cell membranes and electrical delivery of molecular loads using a

microfabricated silicon etched array of lances [23,24]. Figure 5.1 shows an SEM image of a lance

array which contains 10 µm length lances spaced 10 µm from center to center in a grid pattern,

ultimately forming 4 million lances on a 2 cm by 2 cm chip.

Procedurally, nanoinjection works in a series of four major steps which include: staging the

lance in the solution containing the desired molecular load, electrical attraction of the molecular

load onto the lance, physical penetration of the cell membrane of target cells and electrical repul-

sion of the molecular load into the cytoplasmic space, and finally removal of the lance [25–27]

(See Figure 5.2 for illustration of LAN process).

There are several attractive features of LAN relative to other transfection methods. First, it

does not rely on delivery agents that can cross-react with the immune system (such is the case with

several viruses [28–32]), nor does it create cytotoxic effects in target cells (such is the case with

many chemical based methods [22,28]). Second, because the lances are 1-2.5 µm in diameter, the

resulting pores created during the injection event are relatively large, making it possible for large

molecules to transiently pass into the cell. Even though the pores are relatively large, the trauma
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Figure 5.2: Lance Array Nanoinjection Stepwise Process. 1: Staging the lance array in the solution
containing the desired molecular load. 2: Electrical attraction of the molecular load onto the lances.
3: Physically penetrating the cell membrane of target cells and electrical repulsion of the molecular
load into the cytoplasmic space. 4: Removal of the lance array, leaving the molecular load in the
intracellular space of target cells

induced during the process is relatively minimal, as evidenced by high cell viability rates (78% to

91%) previously noted [24]. This latter feature of cell viability is an issue in some instrumentation

based transfection methods, such as electroporation [33] and microinjection [25].

Despite these attractive features of LAN, one short-coming that LAN as well as all non-

viral transfection technologies encounter is that transfection rates are lower than what can be

achieved with viral modalities [28]. This work seeks to directly address this challenge related

to efficient molecular delivery by considering two intertwined procedural variables unique to LAN
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which include: the speed of injection and serial injection of the same sample. In prior testing, it

has been noted that following a single injection event, many cells do not stay adherent to the glass

slide used for staging the injection process. The purpose of investigating the effect of speed of

injection is to determine the extent that cell removal can be minimized such that serial injection

protocols can be investigated.

Indeed, it is shown in this work that by slowing the speed of the injection process that target

cells are able to remain adherent to the glass slide using for staging the injection. Because the cells

remain post-injection, it is possible to inject multiple times and thereby increase the amount of

molecular load delivered to the cell.

To help establish the robustness of this procedural investigation, as part of the serial injec-

tion testing, two different cell types, immortalized HeLa culture and primary neonatal fibroblast

cells, were used to determine how the different cell types respond. To demonstrate molecular load

delivery, propidium iodide (PI), a dye typically impermeable to the cell membrane, was used in

conjunction with flow cytometry to quantify the injection-dose response.

Because the speed of injection experimentation led to serial injection experimentation, the

following will be compartmentalized to consider the speed of injection work first, followed imme-

diately by the serial injection work.

5.2 General Methods

This work consists of two major experiments – the speed of injection and serial injection

experiments. The speed of injection work, which is presented first, is a precursor experiment that

led to further exploration that makes up the serial injection experiment. Both used common exper-

imental elements which are detailed in this general methods section. For experimental elements

unique to the specific experiment, separate descriptions are provided.

5.2.1 Lance Array Fabrication

Reference [23] provides a complete description of the microfabrication process used for

creating the silicon lance array and is presented here simply for convenience. The lance array

microfabrication process consisted of using positive photoresist (AZ330F) to pattern a grid of
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circles that became pillar-like structures following deep reactive ion etching (DRIE). These pillars

were then treated with a sulfur hexafluoride (SF6) isotropic plasma etch, which serves to form a

pointed tip on the pillars, resulting in lances (see Figure 5.1).

5.2.2 Injection Set-Up

Figure 5.3 shows a schematic, cross-sectional view of the injection device and contains

eight major components which include: stepper motor, threaded rod, coiled spring, orthoplanar

spring, electrical connections, silicon lance array, glass slide for the cell culture, and cell culture

platform. The stepper motor and electrical connections receive input signals from the electrical

control box (see Figure 5.4). During the injection process, the stepper motor causes the threaded

rod to vertically displace the coiled and orthoplanar springs. The lance array is attached to the

inferior surface of the orthoplanar spring and interacts with the cell culture contained on the glass

slide according the process outlined in Figure 5.2. The cell culture platform serves to facilitate

alignment with the orthoplanar spring and also helps fix the glass slide, preventing it from adhering

to the silicon lance array.

5.2.3 Electrical Control Box

The electrical control box, which provides electrical input to the injection device, operates

by receiving three inputs from three separate power supplies (2400 SourceMeter, Keithley) (see

Figure 5.4). Figure 5.5 is a full electrical schematic of the electrical control box where it illustrates

electrical inputs from the power supplies running through two relays arranged in series. The first

relay was used to allow either Input 1 or 2 to pass, while the second relay was used to allow the

input from the previous relay or Input 3 to pass. This allowed one input at a time to pass using two

digital pins (one to control each relay, using 5V or GND).

The output signals from the electrical control box used for the serial injection testing can

be described as the following: Output 1, current controlled of either 1.5 or 3.0 mA for 20 seconds;

Output 2, 10 intermittent pulsing events between 0V and +7V for 20 ms (2 ms period); Output 3,

5 second interval of +1.5V. In addition to these actions, the electrical control box also operates the
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Figure 5.3: Cross-sectional schematic of LAN injection device relative to cell culture platform.
Components include (top to bottom): stepper motor, threaded rod, coiled and orthoplanar springs,
electrical connections, silicon lance array, glass slide for cell culture, and cell culture platform

stepper motor attached to the superior end of the injection device. It should be noted, Outputs 2

and 3 occur when the lances are inserted into the cells.

5.3 Methods: Speed of Injection Experimentation

5.3.1 Stepper Motors

Two separate stepper motors (28BYJ-48-5V, Rohs; TSFNA25-150-17-023-LW4, Anaheim

Automation (AA)) were used to for the speed of injection testing in order to achieve the speeds

needed and still ensure that the stepper motors would not skip steps by being driven too quickly.

Five different speeds were used for this experiment, which include 0.08, 0.16, 0.60, 1.80, 3.00
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Electrical Control Box

Injection Device

  Six Well Plate with 

Cell Culture Platforms   Electrical Inputs 

from Power Supplies

 Electrical Outputs  

to Injection Device

Figure 5.4: Experimental set-up showing the electrical control box receiving three separate input
signals coming from three power supplies (not shown) and outputing appropriately timed output
signals to the injection device mounted above the prepared six-well plate. Cell culture platforms
with the prepared cell cultures are seen as white and red circular components resting in the wells
of the six-well plate

mm/sec. For the slower speeds of 0.08 and 0.16 mm/sec, the Rohs stepper motor was used and for

0.60, 1.80, and 3.00 mm/sec speeds, the AA stepper motor was used. The injection device was the

same for all sets of injection tests, with the exception of the stepper motor being changed to match

speed conditions.

5.3.2 Cell Culture Preparation

HeLa 229 cells were plated on glass slides within six-well plates (Sarstedt) and incubated

at 37C and 5% carbon dioxide. Culture media contained Dulbeccos Modified Eagles Medium

(DMEM, Gibco) with 10% Fetal Bovine Serum (FBS, Denville Scientific) and streptomycin/penicillin

(Gibco). Cell cultures were allowed to incubate for 24 hrs following the plating process to ensure

adequate adherence to the glass slide. Following the 24 hrs, a mono-layer of HeLa cells, which

were approximately 70% confluent, had their growth media removed and were re-supplied with 2

mL of phosphate buffered solution (PBS, Gibco) in final preparation for injection.
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Figure 5.5: Electrical schematic for the current control box. An Arduino was used to control two
relays and a stepper motor driver for the injection process. Five LEDs are used as indicators for
power, output, and which input being passed through the box

5.3.3 Treatment Protocols

The following describes the various sample types used in the speed of injection testing:

• Non-Treatment Control (NTC): Received no lancing.

• Treatment Protocol for Different Speeds: Samples were lanced a single time and received

no applied voltage during the injection process. Five different injection speeds were applied

during the injection event and include: 0.08, 0.16, 0.60, 1.80, 3.00 mm/sec.

As a convention, specific treatment sample types will be designated by the speed of injec-

tion. For example, HeLa/0.08 refers to a treatment sample that was lanced a single time at 0.08

mm/sec.
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5.3.4 Post-Treatment Analysis

After the injections were completed, all samples were given 0.5 mL of 5X trypsin (Gibco)

and incubated 5 minutes at 37C to facilitate removal of the cells from the glass slides. After the

5 minutes, samples were treated with 1.5 mL of DMEM/FBS media to deactivate the trypsin and

then centrifuged at 2000 rpm for 10 minutes. The supernatant was then removed, 0.25 mL of PBS

was added to each sample, and each sample was then vortexed to prepare them for hemocytome-

try. Quantification of the number of cells were performed according to standard hemocytometry

methods using trypan blue [166].

5.3.5 Statistical Analysis

After cell counts were obtained using hemocytometry, data for treatment samples were

normalized relative to the Non-Treatment Controls according to the following formula.

Cell Count in Treatment Sample
Cell Count in Non−Treated Control

This normalized data was then statistically analyzed in JMP (SAS), using initially an

ANOVA test to screen for statistically significant relationships (F-Ratio: 16.5426) followed by

individual student t-tests (α = 0.05).

5.4 Results and Discussion: Speed of Injection Experimentation

Figure 5.6 shows a set of box plot results for the data generated for the five different injec-

tion speeds. The left-most two box plots were obtained by using the slower stepper motor (Rohs),

while the other three box plots were obtained from the slightly faster stepper motor (AA). It can

be seen that statistically significant relationships exist in all cases between the slower and faster

stepper motors (<0.0001) (see Table 5.1).

Table 5.2 provides a summary of the results showing that for both the 0.08 and 0.16 mm/sec

speeds, that the mean normalized cell count is more than double the highest normalized mean

obtained with the faster stepper motor.
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Figure 5.6: Injection Speed Box Plot. The two left-most box plots were the result of the slower
stepper motor (Rohs) whereas the three right-most box plots were the result of the faster stepper
motor (AA). Statistically significant relationships are noted with an asterisk

Table 5.1: P-Values for Speed of Injection Experiment

Comparison P-Value Comparison P-Value
HeLa/0.08 vs HeLa/0.16 0.6466 HeLa/0.16 vs HeLa/1.80 <0.0001
HeLa/0.08 vs HeLa/0.60 <0.0001 HeLa/0.16 vs HeLa/3.00 <0.0001
HeLa/0.08 vs HeLa/1.80 <0.0001 HeLa/0.60 vs HeLa/1.80 0.7180
HeLa/0.08 vs HeLa/3.00 <0.0001 HeLa/0.60 vs HeLa/3.00 0.4362
HeLa/0.16 vs HeLa/0.60 <0.0001 HeLa/1.80 vs HeLa/3.00 0.2566

Table 5.2: Statistical Summary for Injection Speed Experiment

Injection Speed (mm/sec) Sample Size (n) Mean Normalized Cell Count
HeLa/0.08 10 0.993
HeLa/0.16 10 0.946
HeLa/0.60 10 0.427
HeLa/1.80 10 0.390
HeLa/3.00 10 0.507
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Suggested in these results is that the cultured cells are able to adhere better to the glass

surface used for staging the injection when using injection speeds of 0.08 to 0.16 mm/sec. These

findings are consistent with atomic force microscopy (AFM)-based single-cell force spectroscopy

(SCFS) studies [167–173]. Friedrichs et al [174] demonstrated with a single cell adhered to an

AFM probe by cell adhesion molecules (CAMs), that when placed in contact with a substrate

surface, the speed with which the AFM probe was removed was directly related to the viscous

forces created between the substrate surface and the cell. If sufficiently strong viscous forces

were generated by removing the AFM probe (with the attached cell) fast enough, the cell would

experience a series of five major events which include:

1. Shrinking of the surface area contact between the cell and substrate surface.

2. Cell body removal from the substrate with only membrane nanotubes linking the cell and

substrate.

3. Stressing of the CAM linkages between the cell and AFM probe – reaching a non-linear

maximum level as cytoskeletal structures are strained in the direction of motion.

4. Peripheral rupture of the CAM structures leading to a rapid decrease in adhesion force be-

tween the cell and the AFM probe.

5. Cell removal from the AFM probe as the viscous effects from the substrate-cell interface

overcome the cellular adhesion to the AFM probe.

Returning to the context of LAN, it is suggested that for the majority of cells present on the

glass slides that experience injection speeds of ≤0.16 mm/sec, that the viscous forces created by

the removal of the silicon lance array does not exceed the strength with which the cells are adhered

to the glass slide. For treatment samples experiencing greater speeds of lance array removal, it

appears that fewer cells are able to withstand these removal forces and are pulled away from the

glass.

5.5 Methods: Serial Injection Experimentation

Using the fact that slowing the injection process results in an increase in cell number re-

maining on the glass slide substrate used for staging the injection process, it was proposed to
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investigate whether or not target cells could be injected multiple times and exhibit an increase

in molecular load delivery. Furthermore, it was also proposed to determine whether a difference

exists in molecular delivery when using different cell types. To explore this latter item, two cell

types were selected which include HeLa 229 cells (commonly used in basic research) and primary,

human neonatal fibroblasts (BJ(ATCC® CRL-2522TM)) (used in wound healing applications).

For convenience, the injection speed of 0.16 mm/sec was used for the serial injection testing

because it was twice as fast as the 0.08 mm/sec speed setting and still had a high mean number of

cells still adherent to the glass slide following injection (i.e. 94.6%).

5.5.1 Cell Culture Preparation

For both cell types, test preparation began with seeding glass slides contained within six-

well plates with 2 mL of a growth media, which consisted of: Dulbeccos Modified Eagles Medium

(DMEM, Gibco), 10% Fetal Bovine Serum (FBS, Denville Scientific), and streptomycin/penicillin

(Gibco). Cells were incubated overnight prior to injection at standard conditions of 37C and 5%

carbon dioxide.

Following this process, glass slides were transferred to new six-well plates and snapped

into 3D printed cell culture platforms (used to help align the injection device). Cells, now staged

for the injection process, were given 2 mL of phosphate buffered solution (PBS, Gibco) per well.

At this point, both cell types had formed a mono-layer of approximately 70% confluency.

5.5.2 Propidium Iodide

Propidium iodide (Sigma-Aldrich) was used as a molecular marker in this experiment be-

cause it is typically impermeable to the cell membrane. Because the lances used in LAN penetrate

target cells and then deliver PI to the intracellular space of these target cells, it is an indicator

of successful delivery. Once in the cell, PI can intercalate will nucleic acids, which results in

fluorescent activity 20 to 30 times greater than normal, thereby providing a detectable means of

transfection rates during flow cytometry.
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5.5.3 Treatment Protocols

Treatment samples were generated using the following protocols for both HeLa and Fi-

broblast cells which include:

• Non-Treatment Control (NTC): Received no lancing, no applied voltage, and no PI.

• Background Control for PI (BC): Received no lancing, no applied voltage. Received 0.02

mg/mL PI.

• Treatment Protocol 1.5 or 3.0 mA, injected 1, 2, or 3 times: Lanced, receive 0.02 mg/mL

PI, and received current control which consisted of: 20 second application of either 1.5 or

3.0 mA, followed by 10 intermittent pulsing events between 0V and +7V for 20 ms (2 ms

period), followed by 5 seconds of a +1.5 DC voltage.

Those treatment samples that were injected more than once were incubated for one hour

before the sample was injected again. This refractory period has been shown in previous

testing to prevent excessive stress to target cells.

As a convention, specific treatment sample types will be designated by cell type, current

control setting used during injection, and the number of times the sample was injected. For in-

stance, Fibro 1.5 mA, x2 refers to a fibroblast treatment sample that was injected with 1.5 mA

(used for Input 1), two times.

5.5.4 Post Testing Flow Cytometry Preparation

Following injections, all samples were incubated for 2 hrs prior to being treated with 0.5

mL of 5X Trypsin (Gibco) and incubated for 5 minutes for removal of cells from the glass slide.

Following treatment with trypsin, samples were given 1.5 mL of DMEM/FBS to deactivate the

trypsin. After transferring individual samples to FACS tubes, the samples were centrifuged for 10

min at 2000 rpm. Final preparation for flow cytometry of the samples include decanting super-

natants and re-suspending cell pellets in 0.5 mL of PBS.

69



www.manaraa.com

5.5.5 Flow Cytometry

Quantification of samples was performed using flow cytometry (Attune Acoustic Focusing

Flow Cytometer, Life Technologies). Approximately 20,000 events were captured and character-

ized for each sample. Data extraction was performed using Attune Cytometric 2.1 software (Ap-

plied Biosystems, Life Technologies) by facilitating visualization of events, gating of appropriate

cell populations, and developing primary level data usable for JMP (SAS) statistical analysis.

5.5.6 Statistical Analysis

Primary level data generated from post-flow analysis in Attune Cytometric software was

evaluated in a two part process. First, the percentage of living, PI positive cells in each sample

were calculated according to the following formula:

Number of Living PI Positive Cells in Sample
Number of Living Cells in Sample

Second, data was then screened in JMP for statistical signficance using ANOVA test (F-

Ratio for HeLa study: 21.0098; F-Ratio for Fibroblast study: 49.1873) followed by individual

student t-tests (α = 0.05).

5.6 Results and Discussion: Serial Injection Experimentation

Figure 5.7 shows box plot results of the HeLa cell serial injection experiment. Three find-

ings can be seen in these plots and quantitatively represented in Table 5.3 and Table 5.4. First,

the samples receiving 3.0 mA during Input 1 had a higher mean number of modified cells than

samples receiving 1.5 mA. The relative maximum for the 3.0 mA samples reached a mean value

of 60.47%, which is nearly four times greater than the relative maximum achieved for the 1.5 mA

group. Second, within groups receiving the same current control during Input 1 of the injection

process, samples that were injected twice had a higher mean number of modified cells than those

samples injected one or three times. Third, within the current control groups, both groups receiving
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Figure 5.7: Mean Percentage of Living/Propidium Iodide Positive HeLa Cells for all sample types.
Because of the number of statistical relationships that were derived, statistically significant rela-
tionships are not noted on the box plot figure. For statistical significant relationships, reference
Table 5.3

three injections had mean values for PI uptake that were intermediate levels for the current control

group.

Figure 5.8 shows the box plot results for the serial injection of primary, fibroblasts using

the two different current control settings. Two main features are observed in the results. First, the

Fibro 3.0 mA, x2 sample group had the highest mean percent of modified cells for all samples

(i.e. 20.97%), being more than three times greater than the best mean percent in the 1.5 mA group.

Second, similar to the behavior seen in the HeLa samples for serial injection, the fibroblasts treated

with 3.0 mA also had a relative maximum mean value for the two times injected group.

Table 5.5 and Table 5.6 provide both statistically significant relationship and summaries

for the experiment. Of note, the fibroblasts exhibit lower mean values for the PI delivery than

analogous HeLa samples. Also of note, the HeLa samples that were treated with 3.0 mA had a
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Table 5.3: P-Values for HeLa Serial Injection Experiment

Comparison P-Value Comparison P-Value
NTC vs BC 0.5813 1.5mA,x1 vs 1.5mA,x3 0.3578

NTC vs 1.5mA,x1 0.2629 1.5mA,x1 vs 3.0mA,x1 0.0009
NTC vs 1.5mA,x2 0.0114 1.5mA,x1 vs 3.0mA,x2 <0.0001
NTC vs 1.5mA,x3 0.0346 1.5mA,x1 vs 3.0mA,x3 <0.0001
NTC vs 3.0mA,x1 <0.0001 1.5mA,x2 vs 1.5mA,x3 0.6946
NTC vs 3.0mA,x2 <0.0001 1.5mA,x2 vs 3.0mA,x1 0.0381
NTC vs 3.0mA,x3 <0.0001 1.5mA,x2 vs 3.0mA,x2 <0.0001
BC vs 1.5mA,x1 0.5299 1.5mA,x2 vs 3.0mA,x3 <0.0001
BC vs 1.5mA,x2 0.0402 1.5mA,x3 vs 3.0mA,x1 0.0141
BC vs 1.5mA,x3 0.1032 1.5mA,x3 vs 3.0mA,x2 <0.0001
BC vs 3.0mA,x1 <0.0001 1.5mA,x3 vs 3.0mA,x3 <0.0001
BC vs 3.0mA,x2 <0.0001 3.0mA,x1 vs 3.0mA,x2 <0.0001
BC vs 3.0mA,x3 <0.0001 3.0mA,x1 vs 3.0mA,x3 0.0274

1.5mA,x1 vs 1.5mA,x2 0.1903 3.0mA,x2 vs 3.0mA,x3 0.0574

Table 5.4: Statistical Summary for HeLa Cell Serial Injection Experiment

Comparisons Sample Size (n) Mean (%)
HeLa, NTC 24 0.1996
HeLa, BC 24 3.3325

HeLa 1.5mA, x1 16 7.3231
HeLa 1.5mA, x2 16 16.4594
HeLa 1.5mA, x3 16 13.7281
HeLa 3.0mA, x1 16 30.9944
HeLa 3.0mA, x2 15 60.4720
HeLa 3.0mA, x3 15 46.7300

much larger variability in the grouping of data points when compared to the fibroblast 3.0 mA

treatment groups.

Key elements shown in the results of both HeLa and fibroblast cells is that the cells respond

to the series of injections by having an increase in PI introduction, with the exception of the samples

injected 3 times. Two possibilities to explain the decrease in PI observed in three times injected

samples are related to physiologic responses to LAN. One possibility is that the 1 hr rest period

given to the cells following injection is not long enough for cellular structures to recover from

the injection event. Even though LAN has been shown to be mild in terms of cell viability after

a single injection event [24], it is possible that after three injections, that a longer rest period is
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Figure 5.8: Mean Percentage of Living/Propidium Iodide Positive Fibroblast Cells for all sample
types. Because of the number of statistical relationships that were derived, statistically significant
relationships are not noted on the box plot figure. For statistical significant relationships, reference
Table 5.3

Table 5.5: P-Values for Fibroblast Serial Injection Experiment

Comparison P-Value Comparison P-Value
NTC vs BC <0.0001 1.5mA,x1 vs 1.5mA,x3 0.1745

NTC vs 1.5mA,x1 <0.0001 1.5mA,x1 vs 3.0mA,x1 <0.0001
NTC vs 1.5mA,x2 0.0028 1.5mA,x1 vs 3.0mA,x2 <0.0001
NTC vs 1.5mA,x3 0.0095 1.5mA,x1 vs 3.0mA,x3 <0.0001
NTC vs 3.0mA,x1 <0.0001 1.5mA,x2 vs 1.5mA,x3 0.6654
NTC vs 3.0mA,x2 <0.0001 1.5mA,x2 vs 3.0mA,x1 <0.0001
NTC vs 3.0mA,x3 <0.0001 1.5mA,x2 vs 3.0mA,x2 <0.0001
BC vs 1.5mA,x1 0.6775 1.5mA,x2 vs 3.0mA,x3 <0.0001
BC vs 1.5mA,x2 0.5598 1.5mA,x3 vs 3.0mA,x1 <0.0001
BC vs 1.5mA,x3 0.2826 1.5mA,x3 vs 3.0mA,x2 <0.0001
BC vs 3.0mA,x1 <0.0001 1.5mA,x3 vs 3.0mA,x3 <0.0001
BC vs 3.0mA,x2 <0.0001 3.0mA,x1 vs 3.0mA,x2 0.0002
BC vs 3.0mA,x3 <0.0001 3.0mA,x1 vs 3.0mA,x3 0.1438

1.5mA,x1 vs 1.5mA,x2 0.3646 3.0mA,x2 vs 3.0mA,x3 0.0286
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Table 5.6: Statistical Summary for Fibroblasts Cell Serial Injection Experiment

Comparisons Sample Size (n) Mean (%)
Fibro, NTC 23 0.5383
Fibro, BC 24 5.7713

Fibro 1.5mA, x1 16 6.3556
Fibro 1.5mA, x2 15 4.9353
Fibro 1.5mA, x3 16 4.2588
Fibro 3.0mA, x1 16 15.1175
Fibro 3.0mA, x2 16 20.9738
Fibro 3.0mA, x3 14 17.4550

required in order to reduce cellular stress and increase cell survival rates. A second possibility is

related to the effects on the cellular adhesion to the glass slide following injection. Perhaps even

though cells are able to maintain adhesion to the glass slide at high rates (as shown in the first

portion of this work), that residual strain collects in the CAM structures and after three times of

injection, the CAM can no longer adhere to the glass, resulting in a decreased observed number of

PI in the sample. Suggested here is further investigation into what effects the rest period duration

has on the ability of cultured cells to withstand multiple injection events.

Despite the decreases seen in the samples injected three times, the samples are still ex-

hibiting relatively high levels of PI modification. For instance, the fact that the primary fibroblasts

had a lower number of cells modified than the HeLa cells is not unexpected, particularly given the

fact that BJ(ATCC® CRL-2522TM) fibroblasts are difficult to modify [175–177]. Even so, non-

optimized delivery of PI still reached levels of 20.97%. Furthermore, it is clear that the magnitude

of the current control used in Input 1 has a dramatic impact on PI delivery and warrants further

exploration.

5.7 General Discussion

The combination of results obtained for the speed of injection and the serial injection testing

represent three major findings. First, cell cultures are able to adhere to the glass slide used for

staging the injection process much better (i.e. >94.6%) when the speed of injection is reduced

below 0.16 mm/sec. Second, during serial injection testing, samples treated with 3.0 mA during

Input 1 and injected twice appear to have the greatest mean percent of living, PI positive cells.
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Third, the cell type appears to have an effect on how well cells are modified by PI during the

injection process, with HeLa cells performing better than primary, neonatal fibroblasts.

All three of these findings are viewed as particularly important milestones in regards to

LAN because of how influential they are in establishing higher transfection rates. As noted earlier,

there are several biotechnologies that have attempted to address the challenge of molecular delivery

by non-viral means but are still plagued with transfection efficiency issues, which varying widely

because of intrinsic weaknesses that are part of the technology or because of the cell type being

transfected [28].

Traditionally, viruses have been the benchmark for which transfection efficiency is mea-

sured. However, they fall short of meeting critical design requirements for robust transfection,

particularly in preparation for clinical application. Adenoviruses, Adeno-associated viruses, and

lentiviruses are all considered to have high transfection rates in a wide range of cell types [30, 34–

42]. Unfortunately, adenoviruses are immunologically inflammatory which can be life-threatening

[29, 43], adeno-associated viruses can cause insertional mutagenesis which can be cytotoxic [35,

36], and lentiviruses cause immunologic responses and insertational mutagenesis [30–32, 44].

While retroviruses are useful in CNS (central nervous system) targets [37, 45], the risk of in-

sertional mutagenesis is quite high [37, 46]. Furthermore, viruses in general are limited in their

effectiveness because of the limited pay load capacity (≤ 10 kbp) [37] (see Table 5.7).

In contrast, Lance Array Nanoinjection is able to by-pass many of these short-comings.

First, LAN does not utilize protein vehicles which could cross-react with the immune system,

thereby removing immunologic response issues. Second, LAN creates relatively large pores in tar-

get cells (1-2 µm diameter), allowing for large molecular loads to enter, thus reducing the concern

of not having sufficient pay load capacity. Third, LAN is compatible with gene editing tools such

as CRISPR-Cas9 that mitigate concerns regarding insertional mutagenesis. While the same can be

said of viruses if re-programmed to remove self-insertional mechanisms, LAN does not have the

same rigor of testing to go through prior to use as viral delivery because insertional mutangenesis

in the context of LAN is only an element directly related to the molecular load type, not LAN as a

delivery method.

75



www.manaraa.com

Table 5.7: Benchmark Comparison of Viral Transfection Technologies

Viral Vector Load Capacity Transduction Wide Cell Immune Insertational
(kbp) Rate Types Use Reaction Mutagenesis

Adenovirus 8.5 [37] [34] [37, 38] [29] N/A [38]
Adeno-Associated 4-5 [37] [35, 36] [39] [37] [35, 36]

Retrovirus 10 [37] [178] [37, 45] [43] [37, 46]
Lentivirus 10 [37] [30] [30, 40–42] [30–32] [30, 44]

Key High Degree Medium Degree Low Degree

5.8 Conclusion

Effectively placing molecular loads into target cells without threatening the cell’s survival

is the overall goal of transfection biotechnologies. One non-viral method presented in this work

is known as Lance Array Nanoinjection, a MEMS based device that relies on physical interaction

with target cells and electrical direction of molecular loads. Shown in two sequential experiments

is the effect that the speed of injection and the ability to inject cells repeatedly have on target

cells. In the speed of injection investigation, it was shown that slower injection speeds improve the

number of cells still adherent following injection, reaching a peak mean of 99.3% at 0.08 mm/sec

injection speed. Using these results, serial injection testing with HeLa 229 cells and BJ(ATCC®

CRL-2522TM) cells (neonatal, primary fibroblasts) were conducted by injecting samples multiple

times (1, 2, and 3 times) at two different current control settings (1.5 and 3.0 mA). Results show

that HeLa cells treated with 3.0 mA and injected twice (x2) had the greatest mean PI uptake of

60.47% and that neonatal fibroblasts treated with the same protocol reached mean PI uptake rates

of 20.97%. Together these findings help to establish LAN as a method that can obtain modification

rates comparable to other transfection technologies.

76



www.manaraa.com

CHAPTER 6. CRISPR-CAS9 DIRECTED KNOCK-OUT OF CONSTITUTIVELY EX-
PRESSED GFP IN HELA CELLS

The following chapter has been sumitted as a journal article to SpringerPlus and is currently in

review. The title of this article is “CRISPR-Cas9 Directed Knock-Out of Constitutively Expressed

GFP in HeLa Cells using Lance Array Nanoinjection”.1 As a result, there may be some material

that is contained elsewhere in this dissertation but is presented here as a representation of this

original journal article.

6.1 Introduction

The creativity and scale with which researchers are utilizing clustered regularly interspaced

short palindromic repeat (CRISPR) sequences and Cas9 (CRISPR-associated) proteins for ge-

nomic editing has led to an explosion of possibilities in both transgenic research and gene therapy

applications [127–129, 179–182]. Three major elements fueling this movement include the target

versatility and ease with which researchers can generate CRISPR-Cas plasmids [183], the ability

to modify multiple genomic locations in a single step [137, 138], and the ability to do so at rates

difficult to obtain using other editing methods such as transcription activator-like effector nucleases

(TALEN) [184, 185].

Despite the great potential CRISPR/Cas9 plasmids offer, there are limitations that make

delivering such molecular loads to target cells challenging for widespread application. Commonly

used viruses, such as adenoviruses, adeno-associated viruses, and lentiviruses, are known for hav-

ing high transfection rates [30,35]. However, adenoviruses cause excessive immune reactions [29],

adeno-associated viruses can cause insertional mutagenesis [35], and lentiviruses can cause both

immune reactions and insertional mutagenesis [30–32, 186]. While CRISPR-Cas provides an ele-

1This work was also presented at a poster presentation at the 2015 NanoEngineering for Medicine and Biology
(NEMB) annual meeting (St. Paul, MN) and has been accepted as part of an oral presentation at the 2016 International
Society for Transgenic Technologies (ISTT) annual meeting (Prague, Czech Republic).
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gant method to by-pass many of the concerns related to insertional mutagenesis [187], viruses are

still constrained by pay load capacity, which can limit utility [37].

In an effort to address concerns raised with viral transduction, researchers have put empha-

sis on developing chemical, physical, and/or electrical transfection technologies aimed at produc-

ing a robust delivery method in terms of effective delivery and expression without compromising

cell viability [188–190]. Unfortunately, the trade-off for using non-viral approaches has resulted

in lower transfection rates [28] and additional challenges, such as genetic load transfer and preser-

vation across both the cell and nuclear membranes [191–195]. Commonly used chemical methods

(such as cationic lipids and polymers) can be effective in transfection [196–198] (although not as

effective as viral modalities) [199–206] but are also potentially toxic to cells because of dosage re-

quirements, usually require optimization experimentation for each cell type, and do not work in all

cell lines [22,28]. Physical methods like microinjection and electrical methods like electroporation

can be effective [207] but often are traumatic to the target cells, reducing cell viability [25, 28].

Recently, a new non-viral transfection technology, known as Lance Array Nanoinjection

(LAN) was introduced which was designed with many of these challenges in mind. LAN uses

a microfabricated silicon etched array of lances to physically penetrate hundreds of thousands of

cells simultaneously and electrically deliver attached molecular loads [23,24,208] (see Figure 6.1).

Built upon a first generation technology used to create transgenic mice [25–27], LAN interacts

directly with the molecular load via electrical interactions, thereby eliminating viral-induced im-

mune responses and carrier-vehicle cytotoxicity issues. Furthermore, LAN creates transient pores

between 1-2.5 µm in diameter (making it possible to deliver large loads) and it has cell survival

rates of 78% to 91% post-injection [24].

In this report, we extend previous work by combining LAN with CRISPR-Cas9 technology.

To do this, a CRISPR-Cas9 plasmid was designed to knock-out (KO) constitutive green fluores-

cent protein (GFP) expression in HeLa cells via Non-Homologous End-Joining (NHEJ) repair.

Two major variables explored in this work included: the current-control setting used during the

initial attraction of DNA to the silicon lances prior to cell membrane penetration (1.5, 4.5, and 6.0

mA) and the number of times samples were injected (one time, x1; three times, x3). We report

that cells injected x3 had a significantly higher number of cells with GFP knocked-out when com-

pared to samples x1 injected samples and that the injection-dose response was non-linear. Also, it
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Figure 6.1: Isometric projection of silicon etched lance array taken by scanning electron micro-
scope. Lances measure 8 to 10 µm in length and 1 to 2.5 µm in diameter. Spacing of lances from
center-to-center measure 10 µm in both planar directions in a grid of 2000 by 2000 lances per chip

was observed that an intermediate current control setting (4.5 mA) used during the LAN process

produced the greatest percentage of living, GFP negative HeLa cells.

6.2 Materials and Methods

6.2.1 GFP+/FRT HeLa Cell Line

We generated an isogenic cell line containing a single copy of EGFP (enhanced green flu-

orescent protein) by cloning the code sequence of EGFP into pCDNA5/FRT and introducing this

plasmid into HeLa/FRT cells in the presence of Flip recombinase (Flp-In System, Life Technolo-

gies, Carlsbad, CA). Hygromycin selected HeLa cells expressed 99% GFP and were grown in

Dulbeccos Modified Eagles Medium (DMEM, Life Technologies, Carlsbad, CA) with 10% Fe-

tal Bovine Serum (FBS, Denville Scientific, Holliston, MA) and streptomyocin/penicillin (Gibco,

Waltham, MA) and incubated at 37C and 5% carbon dioxide.
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Figure 6.2: Diagram of the LAN set-up. (Left) Describes the four Phases of the LAN process in
terms of electrical parameters and physical events. (Right) Illustrates the connection of the stepper
motor to the orthoplanar spring to the silicon lance array. With the lance array pointed downward,
during the injection process, the lances are inserted into cultured cells secured on the cell culture
platform

6.2.2 CRISPR Plasmid

In order to facilitate GFP knock-out in the GFP+/FRT HeLa cell line, a CRISPR-Cas9

plasmid was constructed using sgRNA primers directed towards the N-terminus of EGFP, which

would disrupt GFP production via NHEJ repair inaccuracies [183, 209].

The CRISPR-Cas9 GFP knock-out plasmid was created by preparing and ligating sgRNA

GFP oligos to a pSpCas9(BB)-2A-Puro (PX459) plasmid, a gift from Feng Zhang (Addgene plas-

mid 48139) [183]. The top and bottom oligos were prepared to be inserted into the pSpCas9(BB)-

2A-Puro plasmid using protocol previously described in the literature [183]. Plasmids were then
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transformed into competent top10 cells using a standard transformation protocol. DNA was am-

plified and extracted from the top10 cells following the protocols of Qiagen Maxi and Mega prep

kits (Qiagen, Valencia, CA).

6.2.3 Injection Set-Up

The LAN device used for injections is comprised of five major components which include:

silicon-etched lance array, orthoplanar spring and mount, cell culture platform, stepper motor and

threaded screw, and electrical switch box. Figure 6.2 illustrates the interactions of these compo-

nents and provides a context to the LAN process.

6.2.4 Silicon-Etched Lance, Orthoplanar Spring and Mount

The LAN device contains of a microfabricated silicon wafer containing the etched lances

(Figure 6.1) attached to an orthoplanar spring which has the stepper motor mounted on top (Fig-

ure 6.2). The lance array serves to physically penetrate cell membranes and also to electrically

interact with DNA. The orthoplanar spring has an attachment on its bottom surface for the sili-

con lance chip to be inserted, thereby providing vertical motion required for injection as well as

the electrical connections. Construction of both the lance array and the orthoplanar spring are

discussed in prior literature [23, 84].

6.2.5 Cell Culture Platform

The cell culture platform consists of three individual pieces: two PLA 3D printed platform

pieces (MakerBot Replicator 2, MakerBot, Brooklyn, NY) (snap-fit together) and the glass slide

(contains adhered cells). The system is designed such that the glass slide can be assembled into the

cell culture platform during injection, which helps with alignment of the orthoplanar spring/lance

array attachment. Following injection, the glass slide can be easily removed from the assembly for

incubation.
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6.2.6 Stepper Motor and Threaded Screw

The stepper motor is shown in Figure 6.2 as a component attached to the top surface of the

orthoplanar spring and serves as an actuator of the spring in orchestration with the electrical input

signals delivered to the silicon lances. The stepper motor is controlled by an Arduino Uno (Small

Projects, Somerville, MA) and has been calibrated to vertically operate the threaded screw insert

at 160 m/sec.

6.2.7 Electrical Box

The electrical box is designed to take electrical input signals from three different power

sources (Keithley 2400, Cleveland, OH) and to output them to the two electrical leads; one lead

passing through the upper portions of the injection device to supply charge to the lance array, and

another lead passing through the cell culture platform to act as a counter-electrode beneath the cell

culture. Figure 6.2 describes the electrical conditions supplied by the electrical box during the four

phases of the injection process. The timing of the electrical signal delivery to the nanoinjection

device is controlled by an Arduino Uno.

6.2.8 Testing Preparation

GFP Positive/FRT HeLa cells were prepared approximately 24 hrs in advance on 18 mm by

18 mm glass slides contained in six well plates. Cells were incubated during this period at 37C, 5%

carbon dioxide, and supplied with 2 mL of DMEM with 10% FBS and streptomyocin/penicillin.

Cells cultures on the glass slides were approximately 70% confluent.

Following this 24 hr incubation, the HeLa cells were snapped into the 3D-printed cell cul-

ture platforms. Following transfer to the platforms, cells were supplied with 2 mL of fresh DMEM

and 4 µL of 25 mM chloroquine and then incubated for an additional 15 minutes. After being pre-

treated with chloroquine, DMEM was removed and 2 mL of phosphate buffered solution (PBS,

Gibco, Waltham, MA) was added. Incubation for an addition 15 minutes followed. Immediately

prior to injection, treatment samples were supplied with the CRISPR-Cas9 plasmid at a concentra-

tion of 750 ng of DNA/mL of PBS injection solution.
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6.2.9 Post Testing Flow Cytometry Preparation

Following injection, all samples had their glass slides removed from 3D-printed cell culture

platforms and placed into six-well plates with 2 mL of DMEM. All treatment samples were then

incubated for a period of seven days to allow the existing GFP to be lost from cells. After seven

days of incubation, all samples were trypsinized with 0.5 mL of 5x trypsin (Sigma Aldrich, St.

Louis, MO) per well and incubated for 5 min. Trypsin was then deactivated with 1.5 mL of DMEM

per well and then transferred to FACS tubes for centrifugation for 10 min at 2000 rpm. Following

centrifugation, samples’ supernatant were removed and cells were re-suspended in 0.5 mL of PBS

with 80 L of propidium iodide (PI, 500 µg/mL; Sigma Aldrich, St. Louis, MO). The PI served as

a viability stain for selecting living cells from dead cells in post flow cytometry analysis.

6.2.10 Flow Cytometry

All samples were quantified using flow cytometry (Attune Acoustic Focusing Flow Cy-

tometer, Life Technologies, Carlsbad, CA). Prior to flow, appropriate single color samples were

generated for GFP and PI in order to compensate for signal cross-over. Each sample was then run

and had approximately 20,000 events counted and characterized.

Using Attune’s post-processing software, samples were gated based on PI signals for living

vs dead cells. Using only the living cell populations, samples were then gated based on the GFP

signal in order to characterize the efficacy of the CRISPR-Cas9/LAN knock-out of GFP. Figure 6.3

illustrates example flow cytometry results based on the gating procedure described.

6.2.11 Statistical Analysis

Data gathered from flow cytometry was analyzed statistically in JMP (SAS, Cary, NC)

using an ANOVA test (F-ratio = 48.0318) and Student t-tests (α = 0.05). The efficiency statistic

reported in the Results section is based on number of living GFP Negative cells in each sample.

Of note, based on the hypotheses that the samples injected three times will be greater than or equal

to the samples injected once, t-tests involving the comparison of the controls to treatment groups

or treatment groups against one another, a one-tailed p-value is reported. Because samples are

allowed to incubate for seven days post-injection, relative viability rates are not available. For
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a. Non-Treated 

Control (NTC)
e. 1.5 mA, LANx1

g. 4.5 mA, LANx1

i. 6.0 mA, LANx1

f. 1.5 mA, LANx3

h. 4.5 mA, LANx3

j. 6.0 mA, LANx3
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Figure 6.3: Representative flow cytometry results from the ten different samples types. (Left Clus-
ter) Illustrate controls from the experiment (a-d), which contain largely GFP positive populations.
(Right Cluster) Illustrate treatment samples that have been injected one time (e, g, i) and compa-
rably treated samples that have been injected three times (f, h, j), with 1 hr rest periods between
injection events

context of viability rates following LAN, other works have reported viability rates post-injection

between approximately 75% to 90% [208].

6.3 Results

Ten groups of samples were created in order to characterize the effects that the number of

injection events and the current control settings used during LAN would have on GFP knock-out

in the GFP Positive/FRT HeLa cells. Four of these sample types were controls, which consisted

of: Non-Treated Controls (NTC) – received no injection, no applied current/voltage, and no DNA;
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Background Controls for nanoinjection (BC) – received DNA, but no applied electrical protocols

or physical injection; Negative Controls for electrical exposure (NC) – received physical injection,

but with no applied electrical protocols or DNA; and lastly Diffusion Controls (DC) received

physical injection and DNA, but no applied electrical protocol.

Treated samples make up the other six sample types. Single Injection (x1) samples were

physically injected only one time under the following conditions:

• Phase 1: 20 second application of 1.5 mA, 4.5 mA, or 6.0 mA across lance array (performed

with lances external to cell) for the purpose of DNA collection on the lance.

• Phase 2: Lance array inserted into cell culture and pulsed with 10 square-wave pulses of

amplitude between 0 to -7V for 20 ms.

• Phase 3: Directly following pulsing, a 5 second period of -1.5V DC is applied

• Phase 4: Lance array is removed from the cells.

Multiple Injection (x3) samples were Injected under the same conditions as described for

Single Injections (x1) with the exception that following the first injection, cell cultures were placed

back into the incubator for 1 hr before injecting again. This process was repeated for a total of 3

injection events into the same cell culture.

For convenience with treatment sample nomenclature, specific treatment sample types will

be referred to by the current control setting used during Phase 1 and the number of times the sample

was injected. For instance, 1.5 mA, x1 means that the sample received 1.5 mA during Phase 1 and

the samples were nanoinjected only once.

6.3.1 Multiple LAN injections are more effective at GFP Knock-Out

The construction of the HeLa cell line was noted earlier, and consisted of a pFRT/laczeo

HeLa cell line (Flp-In System, Life Technologies) which was purchased and transfected with a

pcDNA5/FRT expression vector containing both the gene of interest and means to facilitate its

production, which include: a green fluorescent protein (GFP) gene, a CMV promoter, and a FRT

site. The FRT site is situated right before the compliment ATG sequence for the hygromycin gene
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Table 6.1: LAN Statistical summary of the sample types and associated GFP KO rates

Sample Type Sample Size (n) Mean GFP KO Percent Median GFP KO Percent
NTC 21 5.27% 5.37%
NC 26 3.92% 3.62%
BC 18 5.96% 5.37%
DC 23 4.04% 3.82%

1.5 mA,x1 16 6.92% 6.11%
4.5 mA,x1 8 21.63% 17.37%
6.0 mA,x1 16 22.65% 8.45%
1.5 mA,x3 20 66.79% 72.78%
4.5 mA,x3 27 79.56% 93.77%
6.0 mA,x3 20 70.01% 70.32%

found in the Flp-In host HeLa cell line. Co-transfection with the pOG44 vector expresses the

flip recombinase machinery that allows the pcDNA5/FRT to flip into the pFRT/laczeo HeLa cell

line, thereby making the hygromycin gene in the HeLa cells functionally complete. Once both

transfection events were accomplished, HeLa cells that successfully had flipped-in the GFP gene

at the FRT site could be selected by hygromycin.

The construction of the CRISPR-Cas9 plasmid was noted earlier, and consisted of a

pSpCas9(BB)-2A-Puro (PX459) plasmid, a gift from Feng Zhang (Addgene plasmid 48139) [183]

that was modified with oligos that code for sgRNA that directs Cas9 to the FRT site to disrupt GFP

production via NHEJ. If the CRISPR-Cas9 GFP knock-out plasmid is successful in disrupting the

GFP gene at the targeted FRT site, the HeLa cells will become GFP negative because these HeLa

cells only have a single GFP gene.

Table 6.1 shows the statistical summary of the flow cytometry results of the respective

sample groups demonstrating the disruption of the GFP gene. Two key findings were noted in

regards to the number of injections and transfection rates. First, the transfection rates for the

x3 injected samples are significantly higher than the x1 injected samples, with the 4.5 mA, x3

treatment samples achieving a median GFP knock-out efficiency of 93.77% (see Table 2). The box

plots in Figure 6.4 and Figure 6.5 box plots show that the collection of data points representing the

4.5 mA, x3 treatment group is relatively closely grouped, with 75% of observations having greater

than 65% transfection rates.
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Table 6.2: One-Sided T-test Results from Comparisons of
Multiple (x3) vs Single (x1) Injected Samples

Multiple Injections (1) vs Single Injections (2) P-Value Difference in Mean GFP KO (1-2)
1.5 mA,x3 vs 1.5 mA,x1 <0.0001 59.87%
4.5 mA,x3 vs 4.5 mA,x1 <0.0001 57.93%
6.0 mA,x3 vs 6.0 mA,x1 <0.0001 47.36%

Data collected from flow cytometry and analyzed in JMP represents mean and median GFP

KO rates for the respective sample types. Percentage of cells successfully transfected is calculated

as the number of living and GFP negative cells divided by the number of living cells in each sample.

Second, Table 6.2 demonstrates that a large difference was observed between mean values

for all treatment group comparisons when examining the effect of number of injections. The largest

difference was observed in the 1.5 mA samples, exhibiting a change of 59.87% when comparing

x1 to x3 injected samples. When viewed in context of Table 6.1, it is noted that the injection-

dose response of all treatment samples is non-linear, meaning the rate of GFP knock-out did not

follow a linear scale with the number of times cells were injected. In the case of the 1.5 mA

current controlled samples, the single injection mean transfection rate is 6.11%. On a linear scale,

the predicted value for samples injected three times should be roughly 18.33%. Instead, for 1.5

mA, x3 treatment samples the transfection rate is 72.78%, nearly 4 times greater than the linear

predicted value. Similar but less pronounced observations were made in the case of the 4.5 mA

and 6.0 mA samples, resulting in differences in linear predictions and observed mean transfection

rates of 14.67% and 2.06%, respectively.

Represented data was initially screened in JMP using ANOVA test to determine presence of

statistically significance relationships followed by one-sided t-test (α = 0.05) evaluation of specific

comparisons. Default minimum p-value reported is 0.0001. Note: All represented relationships

are statistically different.

6.3.2 Mid-range current control most effective at GFP Knock-Out

Table 6.3 shows the results from statistical comparisons between sample types, grouped

according to the number of times the samples were injected. While it is of note that there were no
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Figure 6.4: Combined box plot results for controls and single injection (x1) treatment samples.
Statistically significant relationships are noted Table 6.2 and Table 6.3

NTC BC NC DC 1.5 mA, x3 4.5 mA, x3 6.0 mA, x3
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Figure 6.5: Combined box plot results for controls and multiple injection (x3) treatment samples.
Statistically significant relationships are noted Table 6.2 and Table 6.3
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Table 6.3: One-sided T-test Results from Intra-Group Comparisons
(by Number of Times Injected)

Single (x1) Injected Comparisons P-Value Multiple (x3) Injected Comparisons P-Values
1.5 mA,x1 vs 4.5 mA,x1 0.0684 1.5 mA,x3 vs 4.5 mA,x3 0.0985
1.5 mA,x1 vs 6.0 mA,x1 0.0093 1.5 mA,x3 vs 6.0 mA,x3 0.3454
4.5 mA,x1 vs 6.0 mA,x1 0.4621 4.5 mA,x3 vs 6.0 mA,x3 0.8895

intra-group comparisons that were statistically significant in regards to current control effects on

GFP knock-out (with the exception of 1.5 mA, x1 vs 6.0 mA, x1 injections), it should be observed

that the relative position of the median values for both the single and multiple injection groups

appears to follow a pattern, favoring the 4.5 mA treated samples (see Fig. 4 and Fig. 5). The

data suggests that using an intermediate current control setting of 4.5 mA during Phase 1 that

may improve transfection efficiency. This observed behavior is shown numerically in Table 6.1

and graphically in Figure 6.4 and Figure 6.5. Notably, 4.5 mA, x1 out performs the other single

injection sample groups in terms of the median KO percent by at least 8% and the 4.5 mA, x3

behaves the same by exceeding the other x3 injected sample groups by at least 20%.

Represented data was initially screened in JMP using ANOVA test to determine presence of

statistically significance relationships followed by one-sided t-test (α = 0.05) evaluation of specific

comparisons. Default minimum p-value reported is 0.0001. Note: Only one statistically significant

relationship was identified between the 1.5 mA, x1 and 6.0 mA, x1.

6.4 Discussion

Much like other transfection methods, the designed intent of LAN is to direct genetic loads

into target cells without threatening their survival. Noted earlier, viruses have been a mainstay

in transfection protocols because of the higher transfection rates that can be achieved relative to

non-viral modalities [28]. LAN is a non-viral method designed to address this short-coming by

generically delivering any electrically charged molecular load by electrostatic attraction and release

into the intracellular space of target cells via small micron-sized lance structures.

This process of electrical interaction with molecular loads and physical penetration of the

cell membrane was originally created for mouse embryonic transgenic research using a microelec-
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tromechanical system (MEMS)-based single silicon lance [210]. Using this device, it was shown

that nanoinjection had comparable transfection rates to microinjection but increased embryo sur-

vival rates [25]. This delivery system was particularly useful because genetic delivery merely

needed to be cytoplasmic due to the localized electroporative effect the lance had on the pronuclei

an event termed intracellular electroporetic nanoinjection (IEN) [27].

Later, nanoinjection was extended to somatic cell targets by utilizing an array of silicon

etched lances, a design used in this work. Electrostatic principles used to initially determine DNA

behavior with the single lance injector [26, 140] have been also applied in LAN, both structurally

[23, 84] and procedurally [24, 208].

Initial experimentation with LAN was designed to show the effectiveness with which small

molecular loads (such as propidium iodide, PI) could be delivered to cultured cells and what impact

that would have on survival. Results showed a voltage-dependent relationship for PI delivery, while

maintaining viability rates between 78% to 91% [24]. Similar results were obtained using LAN

in experimentation designed to assess the effects of different saline solution types used during

injection [208].

This current work marks the first LAN proof-of-concept results regarding the use of CRIPSR-

Cas9 plasmids to knock-out gene function. Table 1 indicates that the maximum median GFP KO

efficiencies of 70.32% to 93.77% can be achieved using LAN after injecting HeLa cells three times.

Contextually, these LAN efficiencies are encouraging because high-throughput screening

of the human genome using CRISPR-Cas9 plasmids designed to knock-out (KO) gene function

have proven to be critical to understanding gene function [187]. Maggio et al. [211] recently

demonstrated the KO behavior of CRISPR-Cas9 using adenoviral vector delivery of gRNA and

Cas9 in two separate vectors. Designed to target the AAVS1 safe harbor locus in a panel of human

cells types which include: cervix carcinoma HeLa cells, osteosarcoma U2OS cells, hMSCs, and

myoblasts, this team showed relative gene KO when increasing amounts of the two vectors were

applied. In the case of HeLa cell experimentation, Maggio et al. achieved maximum gene KO

of 31% when 100 TU/cell of both vectors, an efficiency rate less than a third of the maximum

efficiency reported here using LAN in the same cell type. While it can be said that this study

targeted a different locus and therefore had altered efficiency rates, there is no clear indication that

this experiments gene target was easier to alter.

90



www.manaraa.com

In addition to exhibiting high knock-out efficiency rates, this work also shows in Figure 6.4

and Figure 6.5 the non-linear difference between the x1 and x3 injected samples, a behavior not

previously noted in LAN. For example, 1.5 mA, x1 samples had a median KO rate of 6.11%, while

1.5 mA, x3 samples had a median KO rate of 72.78%, a rate nearly 12 times higher. While the

magnitudes are not as high for the other sample comparisons, the non-linear trend is still present.

One possible explanation for this behavior is related to cellular response to cell membrane

defects, such as defects created by lance induced pores. When a surface defect occurs in a cell

membrane, the cell responds by attempting to mobilize and remodel structural elements such as

actinomyosin, microtubules, and the cell membrane by contracting around the wound and allowing

repair machinery to close membrane gaps [153, 154]. In LAN samples that experience multiple

injections, one possible explanation for increased GFP KO is that repair mechanisms may be de-

layed because of prior insults still being repaired. If true, saturation of repair mechanisms would

permit longer periods of time for CRISPR-Cas9 plasmid movement into the cell following multiple

injection treatments, and thereby allowing greater GFP KO. While this idea potentially explains

why greater plasmid delivery may be possible, it does assume that diffusion is a major factor in

plasmid motion across a cell membrane following LAN, a behavior that is not supported by the

diffusion controls (DC) used in this study.

Another explanation for the increased GFP KO with samples injected x3 is related to how

quickly the target cells remove the delivered plasmid. Prior to injection, samples are pre-treated

with chloroquine, an agent designed to inhibit lysosomal action, to increase the half-life of the

plasmid in the cytoplasm of target cells. It is possible that initial dosing of plasmids into target cells

during the first injection event is enough to saturate functional lysosomes such that when additional

plasmids are delivered in subsequent injection events, higher levels of functional CRISPR-Cas9

plasmids are available to disrupt GFP gene function. Again, this idea has not been defined in prior

work and requires further investigation.

Another behavior noted in regards to non-linear KO rates deals with the current control

exposure during Phase 1. Noted in Table 6.1 is the fact that 1.5 mA samples experience the great-

est increase in GFP KO from x1 injection treatment to x3 injection treatment (mean difference

of 59.87%). It has been noted in previous work that lower applied electrical conditions during

LAN contribute to higher cell viability rates [208]. It is believed that the because the 1.5 mA, x3
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treatment samples received a reduced electrical exposure during injection, that more successfully

transfected cells survived to be GFP negative than the 4.5 mA and 6.0 mA treated samples. If that

were the case, samples exposed to 1.5 mA would more likely survive the injection process and

thereby potentially increase the transfection rate.

Intertwined in the discussion of the non-linear behavior of the GFP KO rates when com-

paring x1 injections to x3 injections is the fact that mid-range current controlled samples had the

best median GFP KO. It is observed in Table 6.2 that the 1.5 mA samples experience the greatest

change in GFP KO from x1 to x3 injected samples (a difference of 59.87%), while overall the 4.5

mA samples experience the greatest magnitude in GFP KO, reaching a median value of 93.77% for

the x3 injected treatment group. A possible explanation for this behavior is that 4.5 mA protocols

offers the best balance between effective electrical attraction/release of the DNA during the LAN

process, while being a mild stressor in terms of cell viability. Even though the 1.5 mA protocol

is milder in terms of cellular stress, a feature seen in electroporation studies to improve cell vi-

ability [212], perhaps the 4.5 mA protocol is better at balancing the cellular stress with effective

attraction and release of the DNA, a parameter shown to increase DNA motion when done at higher

magnitudes in processes like electrophoresis [50, 139, 140].

Having demonstrated the ability to effectively KO gene function using CRISPR-Cas9 plas-

mids, future work regarding LAN may aim to either optimize this reported process or explore other

genomic mechanisms that CRISPR-Cas9 can perform, such as transcriptional activation/repression

or gene insertion [130–135], in terms of other cell types, such as primary cell lines or stem cells.

Primary cell line targets are of interest because of the potential therapeutic options it creates in

regards to gene medicine and gene therapy applications, such as enhancing chronic wound heal-

ing [178, 213–216]. Stem cells are also of interest because of similar gene therapy potentials as

well as applications related to transgenic animal generation. Specifically, a common method for

creating chimeric transgenic animals involves genetic modification of stem cells prior to introduc-

tion to the blastocyst [217–220]. The methods used to genetically modify these stem cells (i.e.

electroporation, liposomal reagents) are characteristically threatening to cell survivability and/or

have lower transfection rates [28, 221, 222]. As discussed, LAN could provide a viable alternative

in this area given the fact that genetic modifications and cell survival can occur at high rates, and

therefore requires further investigation.
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CHAPTER 7. CHRONIC WOUND HEALING AND GENE MEDICINE

The following chapter was constructed from two journal articles. The first portion of the chapter

provides a general overview of chronic wounds. Part of the information for this section comes from

an article entitled “Biologic Basis of Nerve Decompression Surgery for Focal Entrapment Diabetic

Peripheral Neuropathy”, which was published in the Journal of Diabetes Science and Technology

in 2014 [208], presented at the Association of Extremity Nerve Surgeons (AENS) annual meeting,

and winner of the Scott Nickerson Award (Houston, TX, 2013).

The second portion of this chapter is a review of transduction and transfection technologies

that have been used in chronic wound healing and highlights emerging concepts that could bridge

current challenges. The information for this section comes from an article entitled “A Review of

Biotechnologies for Enhanced Chronic Wound Healing”, which was submitted to Experimental

Dermatology and is currently under review.

It is intended that the reader can use the information from this chapter as a context for

the work presented in Chapter 8. While some of the material that is presented here is discussed

elsewhere in this dissertation, this chapter provides a much more comprehensive context to the

subject material of chronic wounds and genetic engineering technologies.

7.1 General Chronic Wounds Overview

Chronic wounds globally affect an estimated 50 million patients causing a huge social and

economic impact on patients and communities. The cost of general wound care is estimated to

be $25 billion annually in the US alone and rapidly growing, mainly due to aging populations,

increasing rates of obesity, and the increased occurrence of diabetes [223, 224]. Just in terms of

diabetes, the International Diabetes Federation reports that 415 million adults have diabetes and

this will rise to 642 million by 2040 [225]. When these data are married with an anticipated 25%
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lifetime risk for ulceration for people with diabetes, the need for effective wound healing takes on

a palpable sense of urgency [226–228].

Chronic wounds are complex micro-environments because they can be caused by a variety

of mechanisms. Common factors involved with wound creation include: metabolic disfunction,

vascular disfunction, peripheral neuropathy, tissue insult (through blunt and/or repetitive micro-

trauma), drugs and medications, poor nutrition, etc. [226, 229–232]. The intertwined nature of

these factors makes treating each patient uniquely difficult. Yet despite many of these challenges,

modern medicine has delivered critically important therapies.

For instance, diabetic patients frequently experience foot ulcerations. These ulcers are

regularly a result of metabolic disfunction creating focal entrapment peripheral neuropathy in the

distal limbs and the patient unknowingly creating tissue damage through biomechanical over-load,

burns, blunt trauma, etc. Moreover, compromised vascular supply to the region due to vascular

calcification secondary to diabetes and/or autonomic disfuction in smaller vessels makes healing

these ulcers difficult without intervention. Furthermore, wounds can harbor and foster bacterial

colonies and/or foreign bodies, which can inflame surrounding tissue and add to delays in healing.

Fortunately, intervention therapies exist. In terms of focal entrapment neuropathy, Dellon

is credited for extending carpal tunnel surgical release of constrainted anatomic locals to lower

extremity entrapment sites, leading to neuropathic reversals [208]. In terms of vascular re-supply,

it is common practice to re-purpose the great saphenous vein for arterial by-pass to the lower limb,

thus facilitating better nutrient and immune cell supply to affected limbs. In terms of bacterial

management, antibiotics exist that can attack a variety of organisms, although the emergence of

antibiotic resistant bacteria is a rising concern.

Despite these critical therapuetic advances, one element that still is difficult in terms of

healing an open wound is actually getting resident wound bed cells to quickly close the wound.

While there are many techniques that use environmental controls to get the wound to initiate

healing, such as debridement (surgical or agent-based) of non-viable tissues that can both sur-

round and be contained in the wound bed, reduction of inflammation and/or infection with anti-

inflammatories and antibiotics, moisture correction with wound dressings, and re-epithelialization

and granulation of the wound bed by promotional adjuvants [233, 234], there are still wounds that

are recalcitrant to these methods and do not close.
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7.2 Wound Closure Technologies

In response to this immense chronic wound challenge, researchers have explored and con-

tinue to explore novel alternative approaches to enhance healing processes by genetically engineer-

ing wound beds. The purpose of this review is to highlight two key aspects of research involving the

genetic modification of chronic wound beds for enhanced healing outcomes. First, this review will

survey both viral transduction and non-viral transfection technologies that have been employed in

wound healing, spotlighting animal experimentation, relative strengths and weaknesses associated

with each, and general mechanisms. Second, this review will also consider emerging concepts

related to the transfection process specifically, genomic targeting with CRISPR-Cas9 and new

delivery methods. Further exploration of wound characterization technologies that help guide de-

cisions regarding molecular targets, including wound diagnostics (i.e. bar coding) and molecular

targets for improved healing, will be briefly discussed.

7.2.1 Viral Transduction

Re-purposing viral vectors with the desired therapeutic molecular load is a classical ap-

proach to genetic modification of cutaneous target cells. While this has been done with several

virus types in other areas of gene medicine, primarily three virus types have been used specifi-

cally in wound healing applications, which include: adenovirus, adeno-associated virus, and the

retroviridae family (retrovirus and lentivirus).

Adenoviruses

Adenoviruses (ADV) are non-enveloped viruses containing double-stranded DNA and are

prominently used in wound healing literature. Mechanistically, ADV enters the host cell via recep-

tor mediated endocytosis, transported and then escaped from an endosome, and then has its capsid

bind to the nuclear pore complex of the nucleus and deliver its DNA into the nuclear space where

it is not integrated into the host genome (thus not a risk of insertional mutagenesis) [38,235]. Once

in the nucleus, the DNA can be processed to eventually be expressed as a protein (see Figure 7.1

for more information about ADV function).
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Figure 7.1: Adenovirus transduction occurs as the non-enveloped virus containing double-stranded
DNA binds to coxsackievirus and adenovirus receptors (CAR) and are internalized into the host
cell. Once inside, the virus is contained in an endosome, from which it can escape and then bind
to the nuclear pore complex on the nuclear membrane. The capsid then disassembles and the viral
DNA is imported into the nucleus where it can be transcribed and later translated in the cytosol to
an effector protein
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Advantages of ADV in context of wound healing include: transduction rates of 70-80%

in fibroblasts and keratinocytes [236], transient expression [178], no insertional mutagenesis [38],

and the ability to infect target cells regardless of cell cycle stage [237]. Unfortunately, ADV

also can cause acute inflammatory responses (likely due to capsid proteins) [29], has commonly

infected roughly 90% of people (thus patients may have antibodies developed to the virus making

it difficult to be effective), and has a modest pay load capacity of 8.5 kb [37].

Experimentally the utility of ADV has been shown by its ability to effect production of

several key proteins (such as platelet-derived growth factor-B (PDGF-B), inducible nitric oxide

synthase (iNOS), and vascular endothelial growth factor (VEGF)) [238–242] and in one case, a

receptor (i.e. ErbB3 receptor) [243] for wound healing. In regards to VEGF, a key angiogenic

protein used to increase blood flow to wounds, two investigators have explored using adenoviruses

for VEGF delivery. Romano Di Peppe et al. demonstrated with a topical application of the vector

in healing impaired diabetic mice, that a 3.7-fold increase in blood vessel density was noted 7

days post-treatment [240]. A companion study was attempted in porcine, using a micro-needling

delivery of VEGF-carrying adenovirus in which higher levels of VEGF were noted in the wound

environment but unfortunately did not lead to an associated elevation in neovascularization [241].

More recently, Okwueze et al. demonstrated using a recombinant ADV re-programmed with an

ErbB3 receptor gene, a receptor that produces a cascade leading to re-epithelialization, that signif-

icant improvements in wound healing maturity could be achieved [243]. This work is of particular

note because it demonstrated that EGF-like ligand could initiate/control healing by topical appli-

cation an attractive clinical feature.

As mentioned earlier, ADV have also shown the ability to successfully modify human

primary keratinocytes and fibroblasts at rates as high as 79% [236]. While encouraging in terms

of efficiency, this study unfortunately also highlights the fact that cytotoxic effects were observed

after 10 days post-treatment. These cytotoxic effects, coupled with the fact that adenovirus capsid

proteins can produce acute inflammatory reactions which can disrupt healing in itself [29, 239],

have influenced exploration of other viral vectors.
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Adeno-associated Viruses

Adeno-associated viruses (AAV) are non-enveloped viruses containing single-stranded DNA.

Functionally, AAV generally operate similar to ADV with the main exception being that once the

DNA of the AAV enters the nucleus, it forms either an episomal structure or in rare cases, can

integrate into the host genome (thus carrying a low risk of insertional mutagenesis [244]). Once in

the nucleus, the DNA can be expressed to eventually produce a protein (see Figure 7.2 for more

information about AAV function).

The advantages of AAV include: being highly stable, particularly resistant to heat inacti-

vation [245], low immunogenicity [237], able to target non-proliferating cells [237], mostly non-

pathogenic to humans [178], and have broad tissue tropism [178]. The downside of AAV use is that

they can require high MOI (multiplicity of infection) to transduce cells [237] and have a relative

low pay load capacity of 4 to 5 kb [37].

In companion studies using AAV to express VEGF-A in mice and rat models, it was shown

histologically that more consistent wound healing (in comparison to ADV) has been noted in terms

of angiogenesis, re-epithelialization, and extracellular matrix deposition [215, 246]. Additional

work involving AAV has shown that AAV2/5 and AAV2/8 exhibit affinity for epidermal and dermal

cell targets which can be engineered to be enhanced further by modifying capsid proteins, making

it a useful vehicle even if skin tissues are missed when placing the viral-load [247, 248].

Other Viruses

Lesser used wound modifying viruses include members of the retroviridae family. Retro-

viruses have larger load capacity than AAV AVD (10 kb), albeit it is still fairly modest [37] and

can integrate into the host genome [237]. Retroviruses are characteristically more instable, cannot

transduce non-dividing cells (with the exception of lentiviruses, a genus in the retroviridae fam-

ily), and have lower modification rates [245]. In experimentation, it was shown that retroviruses

containing a PDGF-AA gene facilitated a 300-fold increase in in vitro levels of PDGF-AA after 7

days, producing thickened connective tissue as well as an increase in regional blood vessels [249].

More recently, lentivirus transfection with stromal cell derived factor 1 alpha (SDF-1alpha) has

been shown in diabetic mice models to enhance granulation tissue formation, which is attributed
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Figure 7.2: Adeno-associated virus transduction occurs as the non-enveloped virus containing
single-stranded DNA binds to the host cell and is internalized. Once inside, the virus is contained
in an endosome, from which it can escape, collects around the nucleus, and then bind to the nuclear
pore complex on the nuclear membrane. The exact mechanism for entry is not clearly understood,
but it terms of transduction, nuclear entry represents the rate limiting step for successful transduc-
tion. Once the viral DNA is in the nucleus, it can form into an episome or in rare cases integrate into
the host genome. DNA is then transcribed, followed by mRNA translation for protein production
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Figure 7.3: General differences between viral transduction and non-viral transfection. Note: Green
plus signs are features viewed as positive characteristics while red ”x” marks are viewed as negative
characteristics

to increased cell mobilization and recruitment [216]. While this group of viral vectors are useful,

there is concern that with integration capabilities that insertional mutagenesis is a problem and

therefore limits potential clinical use as a solo technology [46, 186].

7.2.2 Non-Viral Transfection

Some clinical challenges exist that make using viral vectors difficult to use (i.e. limits on

payload capacity, cytotoxic effects, immune reactions, difficulty containing viral particles to tissue

specific locations, etc.) [30–32, 35, 37, 43, 46, 178, 186] and have caused researchers to explore

alternative non-viral modalities for gene transfection of wounds. Figure 7.3 presents general dif-

ferences between viral and non-viral methods in the context of wound healing and provides an idea

of the current limitations of each.

Non-viral transfection technologies have undergone an evolutionary development as both

the understanding of biologic systems has improved and the ability to use that knowledge has

increased. Early works with non-viral transfection in the field of wound healing began with naked

DNA injections and micro-seeding, a process of naked DNA introduction via a modified tattoo
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machine [214, 250, 251]. While novel in approach, many of these direct insertion approaches had

little success in terms of molecular expression or wound healing mainly because of the inability

to keep the DNA intact in the extracellular environment as well as the poor delivery of the DNA

across the target cells outer membrane.

In an effort to more specifically deliver genetic loads across the cell membrane of target

cells, more sophisticated methods began to be used, which include reagent-based methods like li-

posomal agents and instrumentation-based methods like the gene gun. One of the first studies to

report both gene expression and functional improvements using non-viral transfection was a team

that used liposomal agents to deliver a plasmid for acidic fibroblast growth factor (aFGF) [252].

Encapsulated in a cationic liposome, the plasmid was topically applied to both incisional and ex-

cisional wounds in diabetic mice. Both immunohistologic assays and mechanical testing showed

that treated wounds responded significantly better. Follow-up work using a similar premise showed

that using liposomes filled with multiple genes was significantly more effective at achieving bio-

logic effects in wound healing than single gene filled liposomes [253], a result that is useful given

that robust healing employs multiple factors.

The instrumentation-based method called the gene gun, also known as particle bombard-

ment, is another method for plasmid transfer to target cells that has seen functional success. Typ-

ically, gene guns use either gold or tungsten particles with plasmids attached. These particles are

propelled towards target cells, penetrate the cell membrane, and are then able to have the plasmid

removed for molecular effect. Two studies have demonstrated functional results of using plasmids

coding for PDGF and EGF [249, 254]. In the case of the PDGF, it was noted that an increase in

tensile strength occurred, whereas the EFG study showed an improvement in epithelialization and

granulation tissue.

In addition to the gene gun, various forms of electroporation have also been employed for

several cutaneous disorders generally [255] and wound healing specifically [67, 256–259]. Func-

tionally, electroporation generally consists of brief, high pulses of voltage across target cell mem-

branes and causes transient formation of pores in the membrane, allowing passage of molecular

loads. Although designed to address slightly different elements of the healing cascade, much of the

electroporation work has shown functional results ranging from increased regional angiogenesis to

enhanced re-epithelialization. While effective in many cell types, electroporation has disadvan-
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Figure 7.4: General mechanisms for non-viral transfections methods

tages related to the transient indiscriminate movement of molecules across the cell membrane and

the permanent membrane damage that can follow the high voltage pulses that can lead to cell

death [260, 261] (see Figure 7.4 for more information about non-viral transfection mechanisms).

Shown in Table 7.1 and Table 7.2 is a summary of both viral and non-viral animal-wound

studies that show how these methods have been applied to wound healing and the outcomes of

those studies. (Note: Direct injection refers to the placement of the viral particles directly into

the wound bed via injection with a syringe; indirect injection refers to in vitro transduction of

cultured cells using viral particles and then placement of these modified cells into the wound bed

via injection with a syringe.)

7.2.3 Emerging Concepts

While many of the methods discussed up to this point have shown encouraging improve-

ments in wound healing outcomes, there still is no transduction/transfection method that robustly

solves the chronic wound healing problem. Illustrated in Figure 7.5 is a list of criteria that have

helped form technologies aimed at wound healing up to this point and now guide emerging con-

cepts in the field.
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Table 7.1: Animal Experimentation involving Viral Transduction of Wounds

Method of Transfet Gene Animal Model Effect Source
Adenovirus by PDGF-B Mouse Diabetic treated mice experienced [238]
Direct Injection significant reductions in epithelial gaps

(50%) and increases in granulation tissue
area (3.2 fold) 7 days post-treatment.

Adenovirus by PDGF-B Rabbit Treated samples have increased granulation [239]
Direct Injection tissue volume in ischemic wounds.

Adenovirus by VEGF Porcine Increased expression of VEGF in wound [241]
Needle Array Direct Injection beds. No associated elevation in

neovascularization or re-epithelialization.

Adenovirus by ErbB3 Receptor Porcine Following treatment, wounds were given [243]
Gene Gun topically applied EGF-like ligands to

stimulate ErbB3 receptor. Significant wound
re-surfacing and granulation tissue thickness

were observed 5 days post-treatment.

Adenovirus by eGFP Rat Used as a proof-of-concept of adenoviral [236]
Indirect Injection delivery to burn wounds. Transfection rates

were significantly elevated 10% to 40% in
human fibroblasts and keratinocytes.

Adenovirus by iNOS Mouse Wounds treated at the time of wounding [242]
Topical Application were able to overcome iNOS deficient states

allowing for faster wound closure times.

Adenovirus by VEGF Mouse Treated wounds experienced significant [240]
Topical Application wound closure between 3 and 9 days post-

treatment. Length density of arterioles
were also significantly increased ( 2 fold).

Adeno-Associated Virus by N/A Mouse Demonstrated that AAV2/5 and AAV2/8 [247]
Indirect Injection exhibit dermal and epidermal tropism when

placed deep to the skin surface and offers a
potentially useful mechanism for wound

healing.

Adeno-Associated Virus by VEGF Mouse Increased angiogenesis, re-epithelialization, [215]
Indirect Injection and extracellular matrix production resulting

in increased wound breaking strength.

Adeno-Associated Virus by VEGF Rat Statistically significant histological scores [246]
Indirect Injection obtained 18 days post-treatments in terms

of epidermal and dermal regeneration,
granulation tissue thickness, and

angiogenesis.

Retrovirus by Beta-galactosidase and hGH Porcine Increased hGH protein concentrations [262]
Indirect Injection observed for 8 days post-treatment,

leading to significantly increased healing
time.

Retrovirus by PDGF-AA Mouse Modified in vitro keratinocytes exhibit 300- [213]
Indirect Injection fold increase in PDGF-AA levels.

Lentivirus by SDF-1alpha Mouse Treatments exhibited significantly increased [216]
Direction Injection granulation tissue at 7 days, while wound

surface area did not decrease differently
from controls, they did experience greater

epithelialization.
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Table 7.2: Animal Experimentation involving Non-Viral Transfection of Wounds

Method of Transfet Gene Animal Model Effect Source
Direct Injection IL-8 Porcine Used to show neutrophil recruitment post- [251]

treatment.

Electroporation HIF-1alpha Mouse Treated mice express 10-fold increase in [67]
circulating angiogenic cells with increased

local treatment site levels of VEGF, PLFGF,
PDGF-B, and ANGPT2.

Electroporation KGF-1 Mouse Demonstrated that 90% of treated wounds [259]
healed in 12 days versus only 40% in

controls.

Electroporation KGF-1 Rat Increased re-epithelialization of wound by [258]
60% over control after 12 days.

Electroporation TGF-beta1 Mouse Showed that 5 to 7 days post-treatment that [257]
wounds showed increased re-epithelization,
collagen synthesis, and angiogenesis. Also

demonstrated that diabetic skin is more
sensitive to electroporative damage.

Electroporation VEGF Rat Significantly increased skin flap perfusion 10 [256]
and 14 days post-treatment.

Gene Gun EGF-R Porcine Increased EGF-R 24 to 48 hrs. post- [254]
treatment at different levels of skin based
on varied pressures used to propel gene

carrying particle.

Gene Gun PDGF-A and -B Rat Transient increases in wound tensile [249]
strength over controls as high as 3.5-fold

increase at 7 days.

Injection of VEGF Mouse Increased VEGF expression and healing of [263]
Cationic Dendrimer wound 6 days post-treatment.

Liposomal Formation FGF Mouse Increased FGF expression and wound break [252]
strength post-treatment.

Liposomal Formation IGF-1/KGF Rat Increased skin regeneration of wound 250% [253]
over control.

Micro-Seeding EGF Porcine Increased EGF expression 2 days post- [214]
treatment, reaching four to seven fold times

greater than single injected skin samples
and two to three times higher expression

over particle-mediated gene transfer.
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Key Criteria for Exogenous Genetic 
Modification of Chronic Wounds

1. Able to transfect multiple cell types at high rates

2. Does not cause insertional mutagenesis

3. Does not cause immune reaction response

4. Able to facilitate various molecular load sizes and types

8. Able to induce activation of molecular effector in order to 
    sequentially match the molecular result with the appropriate 
    stage of healing

6. Able to have a transient activity of the molecular effector 
    as opposed to permanent integration.

7. Able to keep the treatment localized to target tissues.

5. Able to treat target cells without threatening the cell's 
    survival

9. Able to modify multiple genomic targets in a single transfection 
    event
10. Able to up-regulate target cells' surface receptors

Transfection Mechanics

Cutaneous Specific Mechanics

Controlled Molecular Healing

Figure 7.5: Presents key criteria used to develop transduction/transfection technologies for wound
healing applications

One of the most important ideas that has and continues to promise enhancements to ge-

netic methods in wounds is the combination of approaching the wound in terms of characterizing

the wound system (i.e. wound diagnostics via bar coding and identification of molecular targets

that play an important role in healing) and then matching those characterizations with appropriate

methods (i.e. site-directed genomic enhancement, new delivery methods). Presented briefly here is

a discussion of wound system characterization followed by method improvements (see Figure 7.6).
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Figure 7.6: Illustrates the interplay between wound system characterization and new method de-
velopments that create meaningful emerging technologies

Wound Diagnostics

Bar coding is an advanced wound diagnostic concept that is designed to monitor the molec-

ular dysfunction in wounds. It consists of a taking samples of tissue or fluid from patients wounds

to characterize levels of molecular markers present to help determine the state of the wound and

identify key missing elements related to healing [264]. Demidova-Rice et al. [233] notes that by

using bar coding, providers are able to hone in on specific growth factors and potential receptors

that are absent or expressed at diminished levels.

To help illustrate the utility that can come from bar coding, it is critical to understand that

in a chronic wound there are a variety of dysfunctional activities that can be occurring and that

correctly identifying the problems can greatly increase the potential for healing. For instance, fi-

broblasts found in chronic wounds have a lower growth factor receptor density and consequently,

have a lower mitogenic responses to ligands such as platelet derived growth factor-AB (PDGF-

AB), insulin growth factor (IGF), fibroblast growth factor-basic (bFGF), and epidermal growth

factor (EGF) [265–267]. The believed underlying cause of lower receptor density is directly re-

lated to elevated levels of interstitial proteases, that damage surface receptors on the resident cells.

Complicating the situation further, if high levels of bacteria (greater than 105) or bacterial tox-
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ins are present, excessive inflammatory responses can also occur, further degrading extracellular

growth factors and receptors [233].

This marks a salient point in regards to why genetic approaches to wound healing are neces-

sary. Without properly functioning surface receptors on resident wound cells, it is less effective or

ineffective to attempt to control molecular behavior via application of exogenous ligands. This be-

havior is evidenced by disappointing clinical results achieved with becaplermin (rPDGF-BB), the

only FDA approved topically applied growth factor ligand commercial available. Genetic modifi-

cation to resident wound bed cells provide a means whereby cells can both locally produce essential

growth factors and up-regulate necessary surface receptors that facilitate intracellular biochemical

healing cascades (see Figure 7.7)

The utility of bar coding for pin-pointing molecular dysfunction in regards to chronic

wounds cannot be overstated. Unfortunately, the current practice of bar coding is not widely

adopted.

Molecular Target Identification

Behm et al. [268] offers a well written compilation of mediators that play a significant role

in wound healing. Listed are several traditionally accepted mediators, sources from which these

mediators and natively derived, cell types and receptor types upon which these mediators will act,

and key functions that the mediators initiate.

In addition to these mediators, the reader may also consider other molecular targets that

have more recently been identified in the literature and include: HIF-2α , Toll-like receptor 3

(TLR3) agonist polyriboinosinic-polyribocytidlylic acid (Poly(I:C)), IL-22, adiponectin [269–273].

Additionally, as mentioned earlier, the value of surface receptors initiating local cellular

response towards healing continues to be investigated as noted by findings supporting the effects

of Toll-like receptor 4 (TLR4), CD9, and the cross talk between insulin growth factor receptor 1

(IGF-1R) and estrogen receptors (ERα) receptors on wound closure [273–275].
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Figure 7.7: Illustration of receptor during normal healing and stalled healing secondary to degra-
dation in chronic wounds

CRISPR-Cas9 Genomic Target Modification

A critical interplay occurs between the logistical delivery of genetic pay loads and the

native biologic mechanisms in target cells required to promote exogenous DNA expression. In the

case of viral transfection, this interplay is clearly integrated because the virus is involved in the

delivery as well as the expression of the desired gene. In the case of non-viral transfection, this

interplay is not integrated, and historically been a major source for reduced efficiency in expression

rates relative to viral methods [18, 20–22].
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Fortunately, a relatively new nuclease editing tool, known as CRISPR-Cas9, has been de-

veloped which can facilitate meeting many of the stated wound healing criteria when coupled with

an efficient physical delivery modality. CRISPR-Cas9 nuclease editing systems work with essen-

tially two elements, the gRNA and the Cas9 protein. gRNA sequences are short programmable

sequences that provide a genomic address for the associated generic Cas9 protein to locate target

loci and modify it [96, 183]. Once bound to the target, Cas9 can initiate a variety of effects which

include: direct gene insertion (permanent effect) [130, 131], direct gene knock-out (permanent

effect) [97], transcriptional activation (transient effect) [132–134], or transcriptional repression

(transient effect) [132,135]. Furthermore, since the gRNA and Cas9 protein operate in two distinct

roles, by providing multiple different gRNA sequences, multiple genomic modifications can occur

in a single transfection event [136–138, 209].

The multiple functions of CRISPR-Cas9 are potentially very useful for chronic wounds.

First, CRISPR-Cas9 constructs are relatively simple to construct and are small. Second, CRISPR-

Cas9 can specifically modify nearly any genomic target (making insertional mutagenesis much

less of a concern) and can use the gene library already found in the host genome rather than having

to consistently rely on inserting exogenous DNA. This is particularly useful for wounds because

enhanced performance on a transient basis is useful for matching healing stage to the gene therapy.

Third, if using non-viral methods, the risk of an immune response is near absent. Fourth, CRISPR-

Cas9 can modify multiple genomic targets in a single event making it possible to leverage and

mobilize many of the known molecular effectors for healing as opposed to only one or two as

demonstrated by Table 7.1 and Table 7.2.

Further demonstration of CRISPR-Cas9s potential in wound healing is that CRISPR-Cas9

has been used already in many other related applications including: Duchenne Muscular Dystrophy

[138], following the progression of disease phenotype expression in diseases such as Friedreichs

ataxia [276], development of novel HIV therapies [277], use as in situ functional assays [278], and

transgenic plant breeding [279]. Given the promising results of many of the studies, it is only a

matter of time before CRISPR-Cas9 plasmids are applied to chronic wound healing.
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New Delivery Systems

Tied closely to the promising biologic mechanisms of CRISPR-Cas9 is the idea of com-

bining CRISPR-Cas9 with transfection methods specifically designed to interface with skin con-

ditions. Two existing methods that could be easily employed if dosed in a way to mitigate cell

death: 1) topically applied liposomal reagents or 2) optimized electroporation. As discussed ear-

lier, both of these methods have been shown to deliver at relatively efficient rates to cutaneous

targets [253, 255].

Other technologies that have not yet been used in animal experimentation but have demon-

strated good results in proof-of-concept cell culture conditions include conjugated nanoparticles

[280], microfabricated needles [281, 282], microfabricated nanowires [119], and multi-electrode

arrays [283]. Additionally, another technology that leverages both physical and electrical actions

to modify target cells is an in vitro instrumentation-based method called nanoinjection. First gener-

ation nanoinjection consisted of a micro-electromechanical system (MEMS) that used electrostatic

attraction of DNA onto a silicon micro-sized solid lance that was then inserted into mouse embryos

before electrically releasing exogenous DNA into the host [25–27,210]. This same technology has

been modified in its second generation to consist of a micro-fabricated silicon wafer that has been

etched to create a grid of four million 10 micron length lances spaced every 10 microns that allow

for effective delivery of genetic loads to hundreds of thousands of cells simultaneously [23, 84].

As an emerging method, nanoinjection shows promise in regards to CRISPR-Cas9 chronic wound

applications, given the high efficiency of transfection and high cell survival rates [24].

7.3 Conclusion

Given the present nature of how widespread chronic wounds are and that they are com-

plicated, multi-faceted conditions, it is important that research continue to explore alternatives to

traditional approaches. This review provides a context to technologies that view healing chronic

wounds from the inside-out. Genetically engineering chronic wounds for enhanced healing out-

comes is not yet fully realize; however, it is clear that there are viable approaches and that new

combinations of tools can help overcome current shortcomings.

110



www.manaraa.com

CHAPTER 8. CRISPR-CAS9 TRANSCRIPTIONAL UP-REGULATION OF PDGFR-β
IN PRIMARY NEONATAL FIBROBLASTS

The following chapter comes from a journal article under review by PLoS ONE and is entitled

“CRISPR-Cas9 Transcriptional Up-Regulation of PDGFR-β in Primary Neonatal Fibroblasts fol-

lowing Lance Array Nanoinjection”.1 As a result, there may be some material that is contained

elsewhere in this dissertation but is presented here as a representation of this original journal article.

8.1 Introduction

Chronic wounds represent a health crisis that affects an estimated 50 million patients and

carries high costs in terms of human suffering, quality of life, and health care [223, 224]. To give

perspective to how quickly this global crisis is growing in terms of cases caused by diabetes alone,

in 2016 it is reported by the International Diabetes Federation that 415 million adults are diabetic.

By 2040, the diabetic population is projected to increase by an additional 227 million people [225].

When juxtaposed with the fact that 25% of these patients will have at least one diabetic ulcer

within their lifetime, it is clear that the current chronic wound challenges will become much larger

in the near future making it of paramount importance to have effective therapies to combat this

surge [226].

The key to preventing an escalation of complications related to chronic wounds is to get

wound closure quickly. Many of the traditional treatment approaches (i.e. surgical debridement,

moisture correction dressings, tissue-engineered human skin grafts, etc.) attempt to kickstart native

healing by trying to control environmental factors in the wound in order to over-come this stalled

state. Essentially this approach is seeking wound closure from the outside-in.

1This work has also been accepted as part of an oral presentation at the 2016 International Society for Transgenic
Technologies (ISTT) annual meeting (Prague, Czech Republic) and as a poster presentation at the Kaiser Permenante
Foot and Ankle Summit (Oakland, CA).
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Regrettably, traditional wound care methods can take long periods of time before wound

closure occurs and in some cases, traditional care fails completely necessitating amputation [231].

In an effort to create a second front for wound treatment, researchers have focused on creating

technologies that can genetically modify native wound cells in order to facilitate healing. Es-

sentially this approach is seeking wound closure from the inside-out. Attempted wound healing

transfection methods using this model include: recombinant viral vectors [236, 243], liposomal

reagents [253], particle bombardment with gold- or tungsten- conjugated to DNA [254], and elec-

troporation [67, 256, 257].

Unfortunately, these efforts have had mixed results for two major reasons. First, current

gene modifying technologies experience trade-offs between efficient modification and safety. Vi-

ral transduction can be effective at targeting skin cells but can also have inherent safety issues (i.e.

viral induced immune responses) [29, 32, 239]. Non-viral transfection can be moderately effective

in the skin but frequently causes cell cytotoxicity or survivability concerns (i.e. liposomal reagents,

particle bombardment, electroporation) [37]. Second, nearly all animal experimentation with ge-

netic wound healing has focused on increasing production of ligands important to healing but not

the surface receptors upon which these ligands must act. Demidova-Rice et al. [284] discusses

the incompleteness of this approach by commenting on the disappointing clinical trial results with

topically applied becaplermin, a platelet derived growth factor ligand (PDGF-BB) that is critical

for healing [285]. The attributed cause to less than desired healing results has to do with the fact

that resident cells in chronic wounds have dramatically fewer surface receptors due to excessive

extracellular protease action, therefore preventing ligand-initiated healing even in the presence of

elevated ligand levels (see Figure 8.1).

The purpose of this work is to present an alternative, non-viral transfection method that uses

a micro-electromechanical system (MEMS-based), known as Lance Array Nanoinjection (LAN),

in conjunction with a platelet derived growth factor receptor-β (PDGFR-β ) CRISPR-Cas9 tran-

scriptional activation plasmid. In contrast to previous works, this work demonstrates a method that

can both efficiently and safely modify primary neonatal fibroblasts and demonstrates its utility in

terms of increasing the surface receptor PDGFR-β on fibroblasts.
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Figure 8.1: Illustrates the interaction between PDGF growth factor isoforms (-AA, -AB, -BB, and
-DD) with PDGFR-beta in both normal (left) and chronic (right) wound healing conditions

8.2 Materials and Methods

8.2.1 Lance Array Nanoinjection Device

Figure 8.2 shows a schematic view of the Lance Array Nanoinjection (LAN) device with

the inserted silicon lance array. The LAN device has four major components, which include the:

stepper motor, orthoplanar spring, silicon lance array, and cell culture platform. At the top end,

a stepper motor, which is used to control vertical motion of the silicon lance array, is attached

to an orthoplanar spring, which facilitates vertical displacement by preventing unwanted torsion

motions [84]. As the stepper motor moves the silicon lance array downward, the lance array is able

to interact with the fibroblast cell culture (as detailed in Figure 8.2). To help align this process, the
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fibroblasts are seeded on a glass slide, which is locked into place by the cell culture platform. For

reference, the silicon lance array is a microfabricated-etched array of 4 million lances, measuring

10 µm in length and spaced in a grid pattern every 10 µm. [23] describes the fabrication process

required for the silicon lance array construction.

8.2.2 Lance Array Nanoinjection Process

LAN occurs in a series of three steps shown in Figure 8.2. These steps include:

Step 1: Staging

Step 1 involves staging of the silicon lance array in the solution containing the cell culture.

For electrically stimulated samples, cell cultures experience extracellular current control exposure

of either 3.0 mA or 4.5 mA for 20 seconds. For treatment samples that have the CRISPR-Cas9

plasmid added, this step facilitates the attachment of the negatively charged DNA onto the silicon

lance structures in preparation for physical injection of target cell membranes.

Step 2: Injection

Step 2 consists of the lance arrays being lowered towards the cell culture until the lances

have penetrated the cell membranes of the fibroblasts and contacted the glass slide substrate to

which the fibroblasts are adhered. There is no electrical exposure at the time the lances penetrate

the cell membrane. For samples that have CRISPR-Cas9 plasmid added, this step allows the DNA

to cross the cell membrane.

Step 3: Electrical Delivery

Once the lance array is lowered into the cell cultures penetrating the cell membranes, all

electrically treated samples were given an application of 10 square-wave pulses with an ampli-

tude of 0 to -7V applied for 20 ms. Following the pulses, a 5 second period of -1.5V DC is

applied and then the lance array is removed from the cell culture. For treatment samples that have

CRISPR-Cas9 plasmid added, this step helps to release the DNA into the intracellular space of the

fibroblasts.
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Figure 8.2: Illustrates Lance Array Nanoinjection Device (a) and Process (b). a) LAN device in
a cross-sectional view consists of four major parts, which include: (top to bottom) stepper motor,
orthoplanar spring, silicon lance array, and cell culture platform. Shown in isometric view on the
lower left is a view of the cell culture platform, illustrating how the glass slide containing the
fibroblast culture locks into place for injection. Shown in isometric view on the lower right is a
SEM image of the lances on the silicon-etched array. Lances are spaced every 10 µm in a grid
pattern, measuring 10 µm in length and 1-2.5 µm in diameter. b) Displays the LAN process in
three major steps which include: Staging, Injection, and Electrical Delivery (refer to Lance Array
Nanoinjection Process for details on activities that occur during each step)
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8.2.3 Biologic Testing

Primary neonatal fibroblasts BJ ATTC CRL-2522 were prepared for injection by being

plated on glass slides at 37C and 5% carbon dioxide in Dulbeccos Modified Eagles Medium

(DMEM, Gibco) containing 10% Fetal Bovine Serum (FBS, Denville Scientific) and

penicillin/streptomyocin 24 hrs. prior to injection. Because it was anticipated that the fibroblasts

would proliferate following treatment, cells were plated with a cell confluency or cell density of

50% to 60% across a 1 cm diameter area in order to provide space for cell division to occur.

Following the 24 hr. incubation in growth media, the cell culture plates were removed

from the incubator. Cell cultures were visualized under a light microscope to ensure consistency

in cell confluency and then had growth media removed and replaced with 2 mL of phosphate

buffered solution (PBS, Gibco) in each well. Sample wells that were treated with DNA received 2

µg of CRISPR-Cas9 transcriptional activation plasmid mixture (per manufacturer protocol; Santa

Cruz Biotechnology Inc., sc-400187). This DNA mixture contained information to encode for a

deactivated Cas9 nuclease fused to a VP64 domain (used to activate transcription) and a gRNA

sequence for targeting the PDGFR- gene.

The following describe the different controls and treatments used for experimentation:

• Non-Treated Control (NTC): Received no injection, no electrical exposure, and no DNA.

• Lance Only, Injected 1 Time (LO,x1): Samples were injected one time without electrical

exposure and no DNA.

• Lance Only, Injected 2 Times (LO,x2): Samples were injected twice, with a one hour rest

period between injections. Both injection events were done without electrical exposure and

no DNA.

• Background Control, 3.0 mA, Injected 1 Time (BC3,x1): Samples were injected one time

with electrical exposure and no DNA. Specifically, these samples received 3.0 mA during

Step 1 of the injection process (refer to Figure 8.2).

• Background Control, 3.0 mA, Injected 2 Times (BC3,x2): Samples were injected twice,

with a one hour rest period between injections. Both injection events were done with electri-
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cal exposure and no DNA. Specifically, these samples received 3.0 mA during Step 1 of the

injection process (refer to Figure 8.2)

• Background Control, 4.5 mA, Injected 1 Time (BC4.5,x1): Samples were injected one

time with electrical exposure and no DNA. Specifically, these samples received 4.5 mA

during Step 1 of the injection process (refer to Figure 8.2).

• Background Control LAN, 4.5 mA, Injected 2 Times (BC4.5,x2): Samples were injected

twice, with a one hour rest period between injections. Both injection events were done with

electrical exposure and no DNA. Specifically, these samples received 4.5 mA during Step 1

of the injection process (refer to Figure 8.2).

• Diffusion Treatment, Injected 2 Times (DT,x2): Samples were injected twice with 2 µg

of CRISPR-DNA mixture in each sample, with a one hour rest period between injections.

Both injection events were done without electrical exposure.

• LAN Treatment, 3.0 mA, Injected 2 Times (LAN 3.0,x2): Samples were injected twice

with 2 µg of CRISPR-DNA mixture in each sample, with a one hour rest period between

injections. Both injection events were done with electrical exposure. Specifically, these

samples received 3.0 mA during Step 1 of the injection process (refer to Figure 8.2).

• LAN Treatment, 4.5 mA, Injected 2 Times (LAN 4.5,x2): Samples were injected twice

with 2 µg of CRISPR-DNA mixture in each sample, with a one hour rest period between

injections. Both injection events were done with electrical exposure. Specifically, these

samples received 4.5 mA during Step 1 of the injection process (refer to Figure 8.2).

8.2.4 Flow Cytometry Preparation

Prior to running flow cytometry for test samples, calibration of FITC as a marker and the

baseline activity of native PDGFR-β was performed. For FITC calibration, a FITC-CD90 conju-

gated antibody (BioLegend, 328107) was applied to the fibroblasts and flowed, matching expres-

sion levels previously recorded for fibroblasts [286, 287]. For PDGFR-β baseline measurement

of pre-treated cells, cells were labelled with a FITC-PDGFR-β conjugated antibody (Santa Cruz
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Biotechnology Inc., sc-19995). Results showed PDGFR-β levels in living cells to be <1% prior

to testing, which indicated that increases due to treatment could be measured.

All samples were returned to the incubator for 48 hrs. post-injection before preparing the

samples for flow cytometry (per CRISPR Activation Plasmid Transfection Protocol, Santa Cruz

Biotechnology Inc.). After that time, samples were removed from the incubator and cell cultures

were scraped from the glass slides. Each well’s contents were then transferred to a FACS tube and

centrifuged at 2000 rpm for 10 min. Samples were then decanted and rinsed with 1 mL of PBS

and centrifuged again at 2000 rpm for 5 minutes. Samples were decanted again and then given 100

µL of ice cooled PBS and 20 µL of FITC-PDFGR-β conjugated label (Santa Cruz Biotechnology

Inc., sc-19995). After incubating on ice for 12-15 minutes, samples were then rinsed in 2 mL of

PBS and centrifuged at 2000 rpm for 5 min. Samples were decanted again, re-suspended in 250

µL of ice cooled PBS and 40 µL of propidium iodide (PI, Sigma Aldrich). PI was added to all

samples as a cell viability stain because it is impermeable to living cells membranes.

8.2.5 Flow Cytometry and Statistical Analysis

Characterization of the samples was performed using flow cytometry (Attune Acoustic

Focusing Flow Cytometer, Life Technologies). For each sample well, 20,000 events were captured.

Post-flow analysis was conducted using Attune Cytometric 2.1 software (Applied Biosystems, Life

Technologies). Gating of the data occurred to two steps. First, the samples were evaluated for cell

viability using gating for PI signals. Second, living cells were then gated for the relative FITC-

PDGFR-β signal, thus establishing the relative level of living, PDGFR-β positive cells in each

sample.

Once primary level data was generated for each sample, data was statistically analyzed in

JMP by first screening for the presence of statistical significance using ANOVA testing followed

by further testing using student t-tests to determine relative significance between sample types (α

= 0.05).
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Table 8.1: P-values for sample comparison of the Number of Living Cells

Comparison NTC LO,x1 LO,x2 BC3,x1 BC3,x2 BC4.5,x1
LO,x1 0.2258 – – – – –

BC3,x1 0.2416 0.0176 – – – –
BC4.5,x1 0.0043 <0.0001 0.0778 – – –

LO,x2 0.0011 <0.0001 0.0269 0.6291 – –
BC3,x2 0.0246 0.0009 0.2236 0.6898 0.4032 –

BC4.5,x2 0.0013 <0.0001 0.0250 0.5199 0.8451 0.3351

8.3 Results

In an effort to compartmentalize the effects of LAN with and without the PDGFR- CRISPR-

Cas9 plasmid, the Results and Discussion sections will be divided into two sub-sections. The

Electro-Mechanical effects of LAN will examine the controls and treatment samples that had no

plasmid added. Treatment samples that had the PDGFR-β CRISPR-Cas9 plasmid added will be

examined in a second group, where all samples injected twice (with or without DNA) will be

examined to show the difference between those samples given the CRISPR-Cas9 plasmid.

8.3.1 Electro-Mechanical Effects

Figure 8.3 shows box plot results for the number of Living Cells and the Number of

Living/PDGFR-β Cells for the seven types that did not receive DNA during injection. Detailed in

Table 8.1 and Table 8.2 are the p-values for the student t-test comparisons of the different samples

within this group and shown in Table 8.5 is a statistical summary for all samples. Of particular

note, samples that were injected twice had a significantly higher number of Living Fibroblasts

and Living/PDGFR-β Fibroblasts compared to NTC. Statistical comparison between one and two

times injected samples for analogously treated sample types also have significant differences (i.e.

LO,x1 vs LO,x2 and BC3,x1 vs BC,x2), except for the BC4.5,x1 vs BC4.5,x2 comparison. This

trend is further illustrated in Table 8.5.
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Figure 8.3: Shows box plot results for the Number of Living Cells (left) and the Number of
Living/PDGFR-β+ Cells (right), with outliers removed. For convenience, see Table 1 to see
statistically significant relationships between the different sample types for Electro-mechanical
experimentation

Table 8.2: P-values for sample comparison of the Number of
Living/PDGFR-β+ cells

Comparison NTC LO,x1 LO,x2 BC3,x1 BC3,x2 BC4.5,x1
LO,x1 0.3927 – – – – –

BC3,x1 0.1001 0.4518 – – – –
BC4.5,x1 0.0003 0.0560 0.0338 – – –

LO,x2 <0.0001 0.0002 0.0014 0.2538 – –
BC3,x2 0.0002 0.0036 0.0203 0.6956 0.5101 –

BC4.5,x2 <0.0001 <0.0001 0.0006 0.1236 0.6287 0.2861

8.3.2 CRISPR-Cas9 Effects

Figure 8.4 shows box plot results for the number of Living Cells and the Number of

Living/PDGFR-β Cells for the comparisons of the NTC relative to the twice injected sample types.

Shown in Table 8.3 and Table 8.4 are the p-values for the student t-test comparisons of the different

samples within this group. Table 3 provides a statistical summary for these samples types. Seen in

these comparisons is that the three DNA injected samples (i.e. DC,x2; LAN3,x2; and LAN4.5,x2)

were significantly higher than the NTC for both the number of Living Cells and the number of
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Figure 8.4: Shows box plot results for the Number of Living Cells (left) and the Number of
Living/PDGFR-β+ Cells (right), with outliers removed. For convenience, see Table 2 to see statis-
tically significant relationships between the different sample types for CRISPR-Cas9 experimen-
tation

Table 8.3: P-values for comparison of the Number of Living Cells

Comparison NTC LO,x2 BC3,x2 BC4.5,x2 DC,x2 LAN3,x2
DC,x2 0.0233 0.1819 0.1383 0.2361 – –

LAN3,x2 0.0034 0.0434 0.0343 0.0683 0.4971 –
LAN4.5,x2 0.0002 0.0040 0.0035 0.0085 0.1221 0.3827

Living/PDGFR-β Cells, with the exception of the number of Living/PDGFR-β Cells in the NTC

vs. DC,x2 comparison.

Comparison of the DNA treated samples to the non-DNA treated samples reveal that there

is only a consistently significant difference between LAN4.5,x2 and the non-DNA treated samples

(i.e. LO,x2; BC3,x2; and BC4.5,x2) for both the number of Living Cells and the number of

Living/PDGFR-β Cells. There is an increase in the mean fold cell counts in both categories for all

DNA treated samples compared to non-DNA treated samples.

As a group, LAN4.5,x2 performed the best in both measures but was not significantly

different from other DNA treated samples (i.e. DC,x2 or LAN3,x2). Table 8.5 highlights the fold

increases among the DNA sample types, indicating large mean fold increases over the NTC in the

Number of Living/PDGFR-β with LAN4.5,x2 having an increase of 15.29-fold.
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Table 8.4: P-Values for sample comparison of the Number of
Living/PDGFR-β+ cells

Comparison NTC LO,x2 BC3,x2 BC4.5,x2 DC,x2 LAN3,x2
DC,x2 0.1694 0.2900 0.3035 0.3419 – –

LAN3,x2 0.0338 0.0686 0.0821 0.0967 0.4515 –
LAN4.5,x2 0.0057 0.0134 0.0189 0.0232 0.1604 0.5124

Table 8.5: Statistical summary for all sample types in PDGFR-β Experimentation

Sample Type Sample Size Mean Living Fold Increase in Living Mean Living / Fold Increase in Living /
(n) Cell Counts Cell Counts over NTC PDGFR-β Cell Counts PDGFR-β Cell Counts over NTC

NTC 19 44,730 – 2311 –
LO,x1 18 35,580 0.80 3023 1.31
LO,x2 20 69,243 1.55 6213 2.69

BC3,x1 21 53,245 1.19 3635 1.57
BC3,x2 15 62,696 1.40 5643 2.44

BC4.5,x1 21 65,786 1.47 5308 2.30
BC4.5,x2 15 70,772 1.58 6631 2.87

DC,x2 18 102,666 2.30 18,532 8.02
LAN3,x2 18 120,059 2.68 27,514 11.91

LAN4.5,x2 18 142,435 3.18 35,327 15.29

8.4 Discussion

8.4.1 Electro-Mechanical Stimulation

To the authors’ knowledge, the effect of electro-mechanical stimulation (EMS) of mam-

malian cells through direct interaction with the intracellular space of the target cell has not been

previously observed, particularly in the context of its effects on PDGFR-β and cell proliferation

of fibroblasts. Other researchers have investigated the effects of mixed mechanical conditions

that can stimulate cellular gene expression and/or biochemical behavior. For instance, Hu et al.

used direct magneto-mechanical actuation of PDGFR-β surface receptors on human mesenchy-

mal stem cells using magnetic nano-particles to demonstrate that higher osteogenic gene marker

expression could occur after 7 and 12 days of stimulation [222]. Similar concepts of actuating

mechano-sensitive surface receptors on mammalian cells have been reported in other works as

well [288–290]. In addition to magneto-mechanical stimulation, researchers have also reported re-

sults of indirect or external stimulation using either high or low electric fields to generate biochem-

ical response [291, 292]. Nevertheless, no previous work has shown that with brief intracellular
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electro-mechanical stimulation, such as that experienced during LAN, that increases in PDGFR-

expression and cell count can be observed.

An explanation of the mechanism(s) generating both the receptor and proliferation response

in the fibroblasts following LAN induced EMS are not understood. Bonazzi et al. [293] reviews

much of what is currently known about the biophysics of galvanotactic effects on mammalian

cells in response to external electric fields. In his work, it is suggested that the general thought

is that electric fields cause an intracellular response that involves a complex signal transduction

cascade that eventually leads to the reorganization of the cytoskeleton and directed cell growth.

Furthermore, Bonazzi et al. hypothesized that by virtue of gradients in the transmembrane potential

values in the target cells, imbalances in ion fluxes via voltage gated ion channels may be disrupted

during electric field exposure and thereby signal up-regulation of biologic intermediates, citing

other researchers who have observed this behavior with electric field exposure on GTPase cdc42p,

Rho/Rac pathway, integrin signaling, and phophatidylinositol signaling pathways [294–298].

In terms of LAN, these previous works involving galvanotactic stimulation and its effect

on mammalian cells provide only a partial explanation of what is observed in this work. For LO,x1

and LO,x2 samples types, electrical stimulation is not used, meaning the increases in both the

PDGFR-β and the cell count are only due to the mechanical response of lancing with the lance

array. Noted in Table 8.5 is that the fold increase for the number of Living/PDGFR-β+ cells for the

LO,x2 sample group is between the BC3,x2 and BC4.5,x2 groups. Also, in Table 8.1 and Table 8.2

it can be seen that there is no statistical difference between any of the twice injected, non-DNA

treated sample types. Examination of Table 8.1 and Table 8.2 in regards to the same comparisons

for the single injected samples reveal that BC4.5,x1 is significantly higher than BC3,x1 and nearly

significantly higher than LO,x1.

How do these LAN results relate to the galvanotactic hypothesis? It is possible that the

physical lancing of the target cell membranes during LAN mimics partially the external electrical

field effects observed in works cited by Bonazzi et al. During the transient membrane openings

following LAN, it is probable that ion imbalances are created across the membrane. As ions travel

across the membrane to re-establish the transmembrane potential, it is possible that these ions

could trigger intracellular cascades related to growth and receptor production a mechanism similar

to the one Bonazzi et al. discuses for transmembrane ion disturbances observed with external
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electric fields exposure. Furthermore, for samples that use electrical application, it is possible

that past a certain threshold (i.e. like that used for 4.5 mA samples) in LAN samples, that using

electrical stimulation in combination with the physical lancing action can increase this intracellular

molecular cascade activity and thereby increase PDGFR- and cell counts. This hypothesis, while

suggested by other’s findings, requires further investigation.

8.4.2 CRISPR-Cas9 Effects

One of the key elements of this experiment is that it shows that EMS by itself can cause

increases in cell growth and the number of living/PDGFR-β+ cells. The CRISPR-Cas9 portion

of the experimentation, in addition to these EMS findings, illustrates an improved biologic re-

sponse mainly for LAN4.5,x2 sample types. The increased efficacy in regards to the higher EMS

conditions relative to the LAN4.5,x2 have been discussed above.

As far as the CRISPR-Cas9 effects in regards to skin targets, experimentation of this kind

has not yet been conducted and represents a key finding for wound healing applications. Basic

science related to CRISPR-Cas9 is rapidly expanding both in terms of functionality of the Cas9

component [97, 133, 299] and the gRNA (guide RNA) sequences that facilitate the action of the

Cas9 [209]. Nevertheless, the application of CRISPR-Cas9 in the realm of wound healing is still

in its infancy.

The implications of both the EMS effect unique to LAN and the enhanced effect noted

with CRISPR-Cas9 in these primary neonatal fibroblasts is significant in terms of wound healing

therapy for four reasons. First, the combination of LAN with CRISPR-Cas9 shown in this work

has achieved high modification rates, reaching between 8 and 15 fold increases in the number of

living/PDGFR-β+ cells. As noted earlier, many non-viral transfection technologies have histori-

cally struggled to obtain rates this high [178, 245].

Second, LAN in conjunction with CRISPR-Cas9 modification of a surface receptor is a

relatively safe method of cutaneous modification. The use of a transcriptional activating CRISPR-

Cas9 plasmid is transient, meaning specifically that there are no structural changes to the host

genome. Furthermore, by modifying the receptor, a level of cellular control can occur by regulating

the amount of PDGF ligand available to bind to the receptor.
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Third, PDGFR-β is an essential element for wound healing and without it significant

wound healing delays occur [285]. As noted earlier, chronic wounds have excessive protease

action, which degrades the extracellular portion of the PDGFR-β making the receptor inoperable.

As a result, lack of PDGFR-β signaling results in dramatic reductions in recruitment of immune

and stromal cells to the wound, decreased proliferation of resident wound bed cells, and functional

inactivity of fibroblasts and pericytes. Thus by improving PDGFR-β presence, treated wounds can

initiate healing sooner.

Lastly, these findings are particularly useful because it demonstrates that molecular effec-

tors (i.e. DNA, RNA, protein, etc.) are not necessarily required in order to alter cellular receptor

expression, which could be useful for current wound healing applications. For instance, commonly

used artificial skin grafts, which consist of primary neonatal fibroblasts seeded on a matrix, could

be pre-treated with LAN induced EMS prior to placement into chronic wounds. Theoretically,

these artificial skin grafts could experience marked increases in fibroblast growth and PDGFR-β

expression, thereby decreasing healing times – a critical element to preventing wound complica-

tions.
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CHAPTER 9. SUMMARY OF FINDINGS AND POTENTIAL FUTURE WORK

Several key discoveries have been discussed in this research in regards to Lance Array Nanoinjec-

tion (LAN) and its ability to transfect both culture cells and primary human cells. Categorically,

these findings have been segregated into three main objectives.

9.1 Key Findings Review

The first objective focussed on several enironomental variables related to the LAN process,

highlighting the impact that they make on cell transfection rates and survival post-injection. The

following provides a brief summary of key findings related to the investigation of environmental

factors impacting LAN outcomes.

• Chapter 2: Saline Solution Effects on Propidium Iodide Uptake Experimentation with

three different saline solution types revealed that PBS with potassium performs slightly bet-

ter than HBSS and PBS without potassium in regards to PI uptake but makes no impact on

cell survival.

• Chapter 3: The Effects of Lance Geometry and Carbon Coating of Silicon Lances Ex-

perimentation with three different lance geometries demonstrated that Flat, Narrow shaped

lances have a slightly better cell viability rate than Flat, Wide and Pointed, but Pointed lances

had the best PI uptake. Carbon coating of lances made little difference on cell viability or PI

uptake.

• Chapter 4: Transient Low Temperature This work demonstrated that transient low tem-

peratures around 3C were sufficient to increase PI uptake into HeLa cells 8.3 times higher

than controls and 173% higher than samples at 23C (given the same injection parameter).

Furthermore, between 3 and 6 minutes post-injection, many of the induced pores close – a

behavior that was observed at different magnitudes for all samples regardless of temperature.
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• Chapter 5: Injection Speed and Serial Injection Investigation with five different injection

speeds showed that slower injection speeds with HeLa cells (0.08 mm/sec) allow nearly all

cells to remain adherent, thus making serial injections (multiple injections into the same

cell culture) possible. These results allowed further exploration into slow, serial injection

experiments with both HeLa cells and primary neonatal fibroblast using PI as an indicator.

Results showed an injection dose response, meaning more PI delivery with more injections.

The second objective focussed on genetic modification of cultured HeLa cells using an

indicator marker. For this work, an isogenic GFP+ HeLa cell line was created that constitutively

expressed the GFP protein. In order to measure the degree with which LAN could successfully

genetically modify these cells, a CRISPR-Cas9 plasmid was created which targeted just up-stream

of the promoter for the GFP gene. Using LAN to deliver the plasmid containing information for

both the gRNA sequence required to target the GFP promoter region and the Cas9 which could

induce a non-homologous end joining (NHEJ) knock-out when guided with the gRNA, it was

observed that high levels of GFP negative cells could be generated (median GFP knock-out rates

of 93.22% in samples injected three times). Similar to earlier work as well, it was observed in

this work that the degree of GFP knock-out correlated to the number of times the samples were

injected.

The third objective investigated the ability of LAN to genetically modify primary, neonatal

fibroblasts, a historically difficult cell line to modify, using a clinically useful target – PDGFR-β .

Similar to the GFP-Knock-Out project, this work also used a CRISPR-Cas9 plasmid system. The

main difference with this system and the knock-out system was that this CRISPR-Cas9 construct

was designed to activate transient up-regulation of an existing gene instead of knock-out of an

engineered gene. Results showed that levels higher than 15-fold could be observed 48 hrs. post-

treatment using the combination of both the CRISPR-Cas9 system and LAN.

9.2 Research Impact

The discoveries made during this research have been significant. LAN represents a viable

transfection technology that satisfies many of the key criteria required for robust transfection which

include: high transfection efficiency, high cell survival rates, effective in clinically useful cell lines,
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flexible pay load capacity, and no insertional mutagenesis. Prior to this work, to the authors’

knowledge, such an accomplishment by a viral transduction or non-viral transfection system has

not yet been achieved.

9.3 Future Work

The success with the latter portions of the research in regards to CRISPR-Cas9 and LAN

are particularly exciting. Chronic wounds are discussed and demonstrated to be a viable direction

for LAN clinical application – a direction that would require additional investigation for clinical

trial. However, because of the broad range of capabilities associated with CRISPR-Cas9, using

CRISPR-Cas9 in conjunction with LAN make the list of potential applications compelling and the

number of potential future directions for LAN broad.

Within the context of current research areas, there are two logical directions for further re-

search investigation regarding LAN (in addition to what has been discussed with chronic wounds).

The first direction would be extending LAN to be able to work with non-adherent induced pluripo-

tent stem cells (iPSCs). iPSCs represent an exciting frontier in being able to re-program host-

derived, fully-differentiated cells into stem cells [75, 76, 300, 301]. Once in stem cell state, these

cells can be used to remedy a large number of disease states, particularly if coupled with CRISPR-

Cas9 [92, 180]. Leveraging the ability of LAN to either initially deliver genes to initiate the trans-

formative process to the stem cell state or facilitating modification of these stem cells in en masse

could be tremendously useful.

A second logical direction for future LAN research involves combining the scope of the

first generation single nanoinjection system with the advances made in the second generation with

LAN. Specifically this means using the Lance Array Nanoinjection system presented in this work,

in conjunction with CRISPR-Cas9, to create a high-through-put transgenic organism generation

system. Transgenic animals are difficult still to create, particularly with the need to visualize the

pro-nuclei during micro-injection. Nanoinjection does not have that requirement [27]. Moreover,

being able to generate large numbers of modified cells quickly, can facilitate basic research investi-

gation into critical mechanisms related to the genome for both animals and plants [279, 302–306].
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APPENDIX A. MATERIALS AND PROTOCOLS

The following appendix was constructed to serve as a resource for important material preparations
and protocols used in the lab.

A.1 Calcium Phosphate Transfection Protocol

The following protocol was originally obtained from Caleb Cornaby and modified as better
techniques were identified through experimentation. It is worth noting, this protocol is designed to
transfect several different cell lines. In my experimentation, HeLa cells have been the target cell of
choice. While this is not an optimized protocol for HeLa cells, it is very effective in transfecting
HeLa cells both in terms of modification rate and cell survival.

As an aside, calcium phosphate transfection operates on the basis of getting a salt to precip-
itate around DNA molecules. These conjugates then are taken into the cell (through an unknown
mechanism but it is believed to be pinocytosis-like) where the salt is dissolved away and the DNA
can then be incorporated into the host’s genome.

A.1.1 Cell Preparation: Materials List

• 6-Well Plate

• DMEM

A.1.2 Cell Preparation (-1 Day)

• Prepare 6 Well-Plate by placing approximately 30∗106 cells into each well. Recommended
method: Using cells from cell passaging after 4 days growth in flask, 100-120 µL per well.

• Add 1 mL of DMEM media to each well.

• Incubate for 24 hours at 37C, 5% carbon dioxide.

A.1.3 Transfection: Materials List

This protocol makes enough solution for 8 total treatment wells on 6 Well-Plate (Makes it
convenient so that you can have non-treated wells next to treated wells.)
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• 7.5 mL DMEM (warmed to 37C)

• Chloroquine (25 mM stock)

• 50 mL conical tube

• 1.5 mL Eppendorf Tube

• HBS (Hepes Buffered Solution) (2x, pH 7.0): Note pH is critical.

• Sodium Phosphate (75 µM, 100x)

• Calcium Chloride (2.5 M)

• DNA

• dH20 (de-ionized water)

• 10 mL serological pipet

• 5 mL serological pipet

For material preparation for this section, refer to the end of the Calcium Phosphate Trans-
fection protocol.

A.1.4 Transfection Prep (0 Day)

Prior to transfection, remove the 6 Well Plate from the incubator to examine cells under the
microscope to determine the degree of cell confluency (how much space exists between cells). Ap-
proximately 40-60% confluency is desired. If there are too many cells, the transfection efficiency
will be lower than desired because successful Calcium Phosphate transfection requires cell divi-
sion for the DNA to enter the intermittently dis-assembled cell nuclear membrane. Cell division
requires available space for the cells to grow.

A.1.5 Transfection (0 Day)

Performed under a Hood

1. Put 7.5 mL of DMEM into the 37 C water bath so it is warm by Step 9.

2. Remove 6 Well Plate from the incubator, remove old media from the day before and replace
with 1 mL of DMEM in each well (this is not the warmed DMEM).

3. Treat each well in 6 Well Plate with: 2 µL of Chloroquine (that is 2 µL of chloroquine per
1 mL of media). (This is a critical step because the Chloroquine acts to transiently inhibit
lysosomes from degrading the DNA introduced through the transfection.)

Once Chloroquine placed, let it sit for at least 5-10 minutes (up to 3 hrs is fine) while prepar-
ing transfection reagents. Swirl gently and put the plates back in the incubator while per-
forming the next steps.
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4. Mix the following using 50 mL conical tube and 1.5 mL Eppendorf Tube:

In the 50 mL Conical Tube: 500 µL HBS (2x, pH 7.0) + 10 µL Sodium Phosphate (100x).

In the 1.5 mL Eppendorf Tube: 62.5 µL Calcium Chloride (2.5 M) + 12500 ng of DNA +
dH20 (enough dH20 to make the total volume of fluid in the Eppendorf Tube to equal 500
µL total)

Note: To clarify the mass of DNA added, consider the following example:

Given a DNA concentration of: 2497 ng/µL, in order to have 12500 ng of DNA, it requires
5 µL of DNA [ ie (12500 ng)*(2497 ng/µL) ] Thus adding 5 mL of DNA to the 1.5 mL
Eppendorf Tube is enough for transfecting the 8 total wells.

Intermediate Transfection Mix

5. Take the 50 mL Conical Tube and place the 5 mL serological pipet tip into the fluid and
begin blowing a constant stream of air into the fluid creating bubbles. THIS IS CRITI-
CAL – IF THERE IS NOT A CONSISTENT STREAM OF BUBBLES THE ENTIRE
PROCEDURE WILL FAIL.

6. In the other hand, pull all of the fluid of the 1.5 Eppendorf Tube into a micro-pipet tip
and slowly, drop-wise add to the bubbling fluid in the 50 mL Conical Tube – this is the
Intermediate Transfection Mix.

7. Following mixture of the solutions, wait for 15 minutes (up to 30 minutes is fine).

8. Remove 6 Well-Plates from the incubator and remove the chloroquine-containing media
from each well in the 6 Well Plate.

Final Transfection Mix

9. Take the 7.5 mL of warmed DMEM and invert the container several times to mix solution.

Add 1 mL of the Intermediate Transfection Mix to the warmed DMEM, creating a total of
8.5 mL of solution creating the Final Transfection Mix.

10. Add 1 mL of the Final Transfection Mix to each treatment well of the 6 Well-Plate. Use all
of the transfection mix if there is extra.

11. Incubate at 37 C, 5% CO2 for 1 day. Check for expression on inverted fluorescent micro-
scope.

A.1.6 Material Preparation Appendix

HBS (HEPES Buffered Solution, 2x)

1. Weigh out the following ingredients: 8.0 g NaCl, 0.37 g KCl, 0.099 g Na2HPO, 1.0 Dextrose
(D-glucose), and 5.0 g HEPES.
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2. Dissolve the dry ingredients into 450 mL of H20, adjust the pH to 7.04 to 7.06. Note: This
is a critical balancing step for transfection to work.

3. Fill the container with 50 mL more of H20, bringing the total fluid content to 500 mL.
Recheck the pH to make sure it is still 7.04 to 7.06.

4. Autoclave.

5. Store at Room Temperature.

Calcium Chloride (2.5 M, CaCl2)

1. Weigh out the following ingredients: 0.238 g HEPES, 27.75 g CaCl2.

2. Dissolve the dry ingredients in 90 mL of H20, adjust the pH to 7.2.

3. Fill the container with 10 mL more of H20, bringing the total fluid content to 100 mL.
Recheck the pH to make sure it is still 7.2.

4. Autoclave.

5. Store at Room Temperature.

Sodium Phosphate (75 µM)

1. Take stock solution and dilute to 75 µM.

2. Autoclave.

3. Store at Room Temperature.

Chloroquine

1. Order 25mM solution.

2. Aliquot if desired.

3. Store in fridge.

A.2 Cell Passaging and Plate Prep for Injections

Several different cell types have been used in the lab recently (i.e. HeLa 229, RPE, HEK,
and BJ Fibroblasts). The following protocol is a general process for passaging these cells and pearls
fo wisdom for getting good growth results. It should be noted that for good results with any cell
culture, a consistent pattern for passaging in terms of days since the previous passaging, cell
confulency at the time of passaging, and the quality of cell growth media are critical. (Note:
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Most failures for good growth of cell cultures is directly related to one of these three items. True
cell culture contamination is rare if a researcher uses sterile technique.)

In order to provide these details concisely, a simple list of important materials (Note: Some
items will not be listed for convenience sake. It is assumed that the reader is aware of sterile
technique in a cell culture hood and basic lab procedures.) and a detailed list of procedural steps
are provided below.

A.2.1 Materials

• Sterile Dulbeccos Modified Eagle Medium (DMEM)(with 10% FBS and penicillin/streptomycin).
Note: If you are working with RPE (retinal pigmented epithelial) cells, then F12 FBS must
be used. Also, for all FBS solutions mixed with DMEM used for cell culturing, the FBS must
undergo heat inactivation of the complement, otherwise it can be problematic for proper cell
growth. Heat Inactivation will be covered in this appendix.)

• Sterile Phosphate Buffered Solution (PBS)

• Sterile 5x Trypsin (≈ 2.5 mL)

• T75 Flask of cells to be passaged

• Pipette-aid

• Waste beaker

• serological pipettes for fluid transfer

• 6-Well Plate with 18mm x 18mm glass slides placed into each well

A.2.2 Protocol

The following protocol should be performed in a cell culture hood using sterile technique.
Prior to every passage event, you must look at the cell cultures under a microscope to access two
major items. First, you want to see if how many of the cells are living. If it has been several days
since the last passaging event, the cells may begin to die, which means they will shrink and darken.
Depending on how many cells are dead, it may not be worth the time and expense to passage the
cells. It is absolutely critical, particularly if you are in an experimental stage of research, to be
consistently passaging the cells (i.e 3-4 days). Otherwise, the cells can go into a quiescent state –
and once there, they are super hard to transfect. Second, you want to see how confluent or densely
spaced the cells are. This will provide key incite into how much to dilute cells during the passaging
or plating process. I my experience, cell confluency during plate prep is critical – too much and the
transfection efficiencies are low because the cells aren’t able to grow; and too little, and the cells
typically died.

1. Spray hands and all materials use for passaging with ethanol before placing into the hood.
Prior to opening sterile containers or handling cell cultures, items in the hood need to be
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UV sterilized, so Place all items (except liquids and flask of cells) into the clean hood and
turn on the UV for at least 15 minutes. For proper material handling, have a place for sterile
solution containers on one side and disposeable items and waste containers on the other.

2. Once items are sterilized, place fluid solutions and cell culture in the hood, having sprayed
them with ethanol before placing in the hood.

3. Using a 25mL pipette, remove the old media from the flask and discard into waste beaker

4. Using a new 10mL pipette, add 10 mL PBS solution to the flask to help rinse unbound or
loosely bound cells into solution. Depending on the cell type you are working with, different
levels of care must be taken at this step. For HeLa, RPE, and BJ Fibroblasts, a gentle rinse
is perfectly fine for the cell cultures. For HEK cells, you must be very careful to not rinse
the entire culture into solution because there are much more loosely bound. Do not do more
than a gentle tilting of the flask with HEK cells.

5. Using the 5 mL pipette, add 2.5 mL Trypsin to the flask. (The trypsin enzymatically cleaves
adhesion proteins between cell cultures and the flask surface.)

6. Place the flask in the incubator for 3-5 minutes. For HeLa and RPE cells, a full five minutes
is required for cells to be trypsinized. For HEK cells, 3 minutes is plenty. For BJ Fibroblasts,
4 minutes is enough – however, if the cells are overgrown a great deal, it can be difficult to
get good cell separation because fibroblasts love to cluster.

Note: It should be recognized that trypsin is indiscriminate as far as what proteins it cleaves,
so depending on what kind of experiment you are running, you may elect for cell scraping
rather than trypsin for cell removal from the flask. Also note, over trypsinized some cell
types can kill the cell of interest.

7. Remove flask from incubator.

For HeLa and RPE cells, swirl the solution in the flask until all cells are no longer adhered.
HeLa cells in particular are very adherent cells and may require you to hit the flask against
the work-surface to break the cells up. After that, use a pipette to and pipette up and down a
portion of the fluid to ensure break up of the cell clusters.

For HEK cells and BJ Fibroblasts, once you remove the flask from the incubator, gently swirl
the cells. That should be enough to break the cells loose. Then slowly pipette up and down
a portion of the fluid to ensure break up of the cell clusters. If you hit the flask containing
BJ Fibroblasts against the work-surface like you would a HeLa flask, you will kill the
cell culture – BE VERY CAREFUL WITH BJ FIBROBLASTS AT THIS STAGE.
Note: An excellent trypsinized cell culture has a cloudy, white appearances, with no visable
cell clumps.

IMPORTANT: This step is a vulnerable step for the cell’s survival, rapidly finish this step
and move to the next step.

8. Using a 10 mL pipette, add 7.5 mL DMEM media to the flask. Note: The DMEM media
contains FBS, which serves to de-activate the trypsin. Once the DMEM is placed into the
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flask, use the same pipette to thoroughly mix the solution to ensure proper mixture and de-
activation of the trypsin.

9. Pull all the cell solution back into the 10 mL pipette. At this point, you can use the 10 mL
solution containing your cell culture for plate prep for Nanoinjection or for freezing back
cells for later use.

10. Add desired amount of cell solution back to the flask (i.e. for a 1:20 ratio, put 0.5 mL back;
for a 1:2 ratio, put 5 mL back)

11. Discard remaining cell solution into waste beaker if not using any cells for injection or
freezing cell back.

12. Once the desired amount of cell solution is added back to the flask, use a 25 mL pipette and
add enough DMEM to the flask to bring the total amount of solution to ≈ 20 mL.

13. Label the flask with the date and amount returned to the flask. Place flask back into incubator,
being sure to loosen the lid to allow CO2 access.

14. Clean up materials and wipe down hood with ethanol

A.2.3 Plate Preparation

For proper plate preparation prior to injection, the following steps should be taken the day
before injections are planned.

1. Follow the cell passage protocol up to the point where you have cells in solution. At this
point, transfer roughly 1.5 to 2 mL of cell solution (per 6-well plate) to a 10 mL conical
tube. Depending on how concentrated the cells are and how confluent you need your cells
for injection, you will need to add DMEM to the conical tube to get the proper concentration
of cells for proper plate prep. This step cannot be over-emphasized. Knowing exactly
how much to dilute the cells for this step takes experience and serial testing. Simply
guess how much to dilute the cells is not a great use of time.

2. Once proper dilution of the cells in the 10 mL conical tube is achieved, take 120 µl of
cell solution from the tube and place in the center of each glass slide in the bottom of the
individual 6-Well Plate.

3. Following completion of seeding each well’s glass slide, place the 6-Well Plate(s) into the
incubator.

4. After 1-2 hours, remove the 6-Well Plates from the incubator and provide 2 mL of DMEM/FBS
growth media to the cells. Return the cells to the incubator for the night. The plates are ready
for injection the next day.
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A.3 Solution Material Preparation

All media preparation must be performed in the sterile hood. Non-fluid supplies
should be UV sterilized for 15 minutes prior to the aliquoting of fluids.

A.3.1 Trypsin Preparation

Trypsin is frequently used in the lab in the context of 6-Well-based experimentation. The
following is a protocol used to aliquot trypsin for those uses.

Materials

• New 100 mL bottle of 10X Trypsin (thawed)(Sigma brand, Chem Stockroom)

• Phosphate Buffered Solution (PBS, Chem Stockroom)

• (x17) 15 mL conical tubes

• (x1) 10 mL serological pipettes

• (x3) 25 mL serological pipettes

Protocol

1. Using the 10 mL pipette, add 6 mL 10X Trypsin to 16 of the tubes

2. Using the same 10 mL pipette, add remaining 10X Trypsin to the final tube

3. Using a 25 mL pipette, add 6 mL PBS solution to each tube already containing 6 mL Trypsin
(use a new 25 mL pipette each time PBS is needed and always fill to the 35 mL line)

4. Add PBS solution to the final tube until the Trypsin is diluted 1:1

5. Label tubes: Date of Preparation, 5x Trypsin, and Initials of Person that Prepared

6. Place tubes in -20C Freezer

A.3.2 Fetal Bovine Serum (FBS) Preparation

FBS can contain complement proteins that can be damaging to cell cultures and requires
heat inactivation to prevent that from happening. The followin protocol provides details on how to
do that and aliquot the solutions in preparation for DMEM growth media prep.
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Materials

• New 500 mL bottle of FBS (thawed, Chem Stockroom)

• (x9) 50 mL conical tubes

• (x8) 15 mL conical tubes

Protocol

1. Heat in-activate the FBS (FBS) by warming FBS is 57C water bath for 1 hour. Be aware that
the FBS will come in a frozen bottle. It takes time to just de-frost the bottle and then heat it
to 57C. Do not let the FBS sit at 57C more than 4 hours – it will cause the proteins to
become gelatinous – a big problem for testing. Since FBS is expensive, you must watch
this carefully.

2. Allow FBS to cool to room temperature. This can take a couple hours.

3. In the hood, pipette 50 mL FBS to 8 of the 50 mL tubes and 5 mL FBS to the eight 15 mL
tubes.

4. Label tubes and place tubes in -20C Freezer.

A.3.3 DMEM Growth Media Preparation

Materials

• Un-opened 500 mL bottle of DMEM (Chem Stockroom)

• 55 mL thawed fetal bovine serum (FBS, Chem Stockroom): (1) 50 mL tube* + (1) 5 mL
tube aliquots*

• Penicillin/Streptomyocin (Chem stockroom): (1) 5 mL aliquot of 10,000 U/mL
penicillin/streptomyocin

• **L-Glutamine (200 mM, online order): (1) 5 mL aliquot (Sigma G7513, 100 mL)

NOTES:
*Indicate supplies that were pre-prepared following protocols specific to their preparation
**L-Glutamine needs to be added to media solutions if the media is not being used quickly;

L-Glutamine is an essential amino acid and degrades over time, by providing extra, the cells are
able to have nutrition to continue growth
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Protocol

1. Thaw heat inactivated FBS (total 55 mL) to Room Temperature.

2. Thaw Penicillin/Streptomyocin and L-Glutamine aliquots to room temperature.

3. Spray containers with alcohol (70%) and place in hood

4. Under the hood, combine the FBS (55 mL), Penicillin/Streptomyocin, and L-Glutamine to
the 500 mL of DMEM.

5. Secure media container cap, slightly agitate the media solution, label, and remove from hood

6. Place media container in refrigerator for storage.
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APPENDIX B. ATTEMPTED EXPERIMENTS THAT YIELDED NO CONCLUSIONS

The following details experiments that were attempted but produced no conclusions for various
reasons. These details are presented here merely as a cataloging of the attempts and results.

B.1 The Effects of Cell Synchronization on the Efficiency of Lance Array Nanoinjection on
HeLa Cells

Introducing exogenous genetic material into target cells and getting a prescribed expres-
sion is the core principle of gene therapy. In effort to facilitate delivery of these loads, several
mechanisms have been developed and include a technology previously described as Lance Array
Nanoinjection (LAN). In brief, LAN utilizes a combination of physical penetration of the cell
membrane with micron-sized silicon etched lances and electrical release of the desired molecular
load (i.e. DNA) off of these lances.

In prior research, it was demonstrated with a single lance injector that during the electrical
release procedural step that localized electroporation occurs at the nuclear membrane, allowing
transient access of the molecular load to the nucleus and consequently causing genetic transforma-
tion of the target cell [27].

In this work, it is hypothesized that LAN uses a similar localized, nuclear electroporative
mechanism as the single lance nanoinjector and that by using a CAG/GFP plasmid, non-dividing
HeLa cells can be successfully transfected to become GFP positive. In order to demonstrate this
mechanism, target HeLa cells will be stalled in G0/G1 phase as a way to have target cells in a
non-dividing state and fully intact nuclear membrane. This aspect of investigating the capabilities
of LAN is considered of value because of the intent to demonstrate LAN as a viable technology in
the in situ context where cells may not be dividing quickly.

Secondarily, it is hypothesized that HeLa cells synchronized via thymidine to S and G2
phases will have different transfection efficiencies from G0/G1 for two reasons. First, in S-phase,
the cell is actively undergoing DNA replication and as such more likely to incorporate exogenous
DNA due to inconsistency that arise during replication. The nuclear membrane is still intact during
S-phase and therefore, relative transfection efficiencies discovered for S-phase when compared to
G0/G1-phase will elucidate potential transfection events required/occurring with LAN. Second, in
late G2-phase, nuclear membranes will breakdown right prior to cell division and act as a window
of opportunity for exogenous DNA to enter and later be incorporated into the genome. During
late G2-phase, DNA replication has stopped such that cell division can occur. As noted with S-
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Table B.1: Cell Cycle and Transfection Rate Predictions

Phase Nuclear Membrane DNA Replication
G1/GO Intact Inactive

S Intact Active
Late G2 Dissolved Inactive

phase, relative transfection efficiency discovered with G2-phase will indicate transfection events
required/occurring with LAN.

B.1.1 Design of Experiment

The experiment will be divided into three sections as follows:

• Stage 1: Characterizing the Cell Cycle of Sample Population following Synchronization
(Calibration Curve Creation)

The intent is to synchronize HeLa cell samples using proximity growth inhibition (G1/G0)
and thymidine (other phases) to determine the time required to get the cells to reach S-phase
and Late G2-phase after release from being stalled. To help establish this calibration curve,
the cells will be fixed and stained with propidium iodide every 2 hours for tens hours. Based
on prior research, ten hours should be long enough to have the cells go through a complete
cell division (4).

Outcome: Stage 1 is anticipated to give us an idea of what stage the cells should be in at a
specific time post-release from having their growth stalled. This will serve as a calibration
curve for the LAN treatment samples.

• Stage 2: Lance Array Nanoinjection at specific Synchronized Cell Cycles The intent in
Stage 2 is to test both hypotheses noted above in regards to LAN and the cell cycle using a
CAG/GFP plasmid.

Consideration: A potential direction that could be added to this stage is performing a similar
test using a CRISPR to see if cell cycle stage is a factor in transfection rate.

B.1.2 Methods

• Stage 1: Calibration Curve

As noted previously, it is anticipated that samples taken every 2 hours following release from
two different growth stalling techniques will be used.

Step 1: G1/G0 Stall

Proximity Growth Inhibition or Density Arrest keeps the cells in G1. Once cells have been
stalled, cells will be fixed, treated with RNAse A, stained with Propidium Iodide, and run
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Table B.2: Stage 1: Cell Synchronization

Well Type Purpose
1 Non-treated Control Normalized Cell Viability

2-6 Treated Samples Determine cell cycle stage after x hrs post-release

through flow cytometry. The results will be analyzed in a third-party software call Flowjo to
determine relative amounts of cells in respective phases. Once a clear determination of what
protocol is required to achieve the desired G1/G0 stall, Stage 2 will be ready to perform on
these non-dividing cells.

Protocols: Proximity Growth Inhibition: Contain below, Fixation: Contain below, Staining:
Contain below, Flow: Samples will be run on the Attune flow cytometer, Post-Flow Analysis:
Requires the FCS files from Flow. Dr. Weber has offered the use of Flowjo for this step.

It is anticipated that we will need approximately 15 samples per cell cycle time.

• Step 2: G1/S Phase Synchronization and Calibration

Using excess thymidine, cells will be stalled at the beginning of S-phase. Following release
from this point, cells will be fixed and prepared for flow cytometry at 2 hour intervals. The
intent is to correlate time elapsed from growth cycle stall release to DNA content via PI
intensity signal. Once a clear determination of time required to achieve desired cell growth
of a sample population is known, Stage 2 will be ready to perform.

Protocols: Thymidine Growth Inhibition: Contain below, Fixation: Contain below, Staining:
Contain below, Flow: Samples will be run on the Attune flow cytometer, Post-Flow Analysis:
Requires the FCS files from Flow. Dr. Weber has offered the use of Flowjo for this step.

It is anticipated that we will need approximately 15 samples per cell cycle time.

Total samples required for Stage 1: 150 samples
The following protocol is an outline of how to prepare a 6-well plate for testing in Stage 1.

B.1.3 Protocols: Thymidine Growth Inhibition from (Yoshizawa2014)

In this protocol, HeLa cells are treated with thymidine twice sequentially with an interval
in between the treatments. Highly synchronous cell cycle populations can be obtained with this
method. For tips on the release from the first block and optimization of the protocol for other cells
lines, see Notes 2 and 3.

(Prep Day 1: 4 PM) Cell Preparation and First Thymidine Block (0 to 16 hrs)

• Culture HeLa cells in a 10-cm dish until 2530% confluency is achieved.

• Add thymidine to a final concentration of 2.5 mM and incubate at 37 C for 16 h.
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(Prep Day 2: 8 AM) First Release (16 hrs to 25 hrs)

• Wash cells twice with 3 mL of pre-warmed PBS or serum-free DMEM.

• Add pre-warmed medium with serum and release cells into cell cycle at 37 C for 9 h. Note:
For better synchronization, keep cells warm during the wash and handle only a small number
of dishes at one time (at most 45 dishes).

(Prep Day 2: 5 PM) Second Thymidine Block (25 hrs to 39/41 hrs)

• Add thymidine to a final concentration of 2.5 mM and incubate at 37 C for 1416 h.

(Prep Day 3: 7 AM) Second Release (39/41 hrs to Desired Time Post-Release starting from
Early S-Phase)

• Wash cells twice with 3 mL of pre-warmed PBS or serum-free DMEM.

• Release cells at 37 C as in step 4 and harvest cells at Desired Time Post-Release starting
from Early S-Phase.

Cell Preparation (Treatment: Day 1)

• Synchronize cells to the desired stage of growth.

• Seed 106 HeLa cell/ml in 2 mL of DMEM of 6-well plate. Incubate for 24 h (For monolayers;
no need to incubate for suspension cells).

Fixation (Treatment: Day 2)

• Remove DMEM from each well and rinse wells with 1.5 mL of PBS and discard PBS.

• Harvest the cells by trypsinizing (for monolayers) by adding 0.5 mL trypsin per well and
then incubate for 5 minutes.

• After incubation, add 1 mL of DMEM to each well to de-activate the trypsin.

• Place cell solution ( 1.5 mL) in Eppendorf tube. Centrifuge the cells at 200 x g for 5 minutes
at 4 0C. (If Desired, count the cells to find out total number of cells.)

• Following centrifugation, remove supernant.

• Wash cells by centrifugation (200 x g, 5 min, 4C) in 1 mL PBS in each Eppendorf Tube.

• Remove PBS supernant.

• Resuspend at 2 x 106 cells in 1 ml ICE COLD PBS.
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• Take 9 mL of 70% Ethanol (in a 15 ml polypropylene centrifuge tube) and Vortex gently
while slowly adding dropwise the ICE COLD PBS cell suspension.

• Store at 4C for AT LEAST 2 hours, 12 - 24 hours is best.

(Treatment: Day 2 or Day 3) Staining with Propidium Iodide (PI)

• Centrifuge the tube at 200 x g, 10 min, 4C to pellet the cells.

• Wash cells at least once with COLD PBS. Cells may form a diffuse ring-shaped pellet, so
centrifuge longer ( e.g. 200 x g, 10 min, 4C )

• Resuspend cells in 400 µl of Staining Solution and transfer to FACS tube.

• Incubate at 37C for 15 minutes, cover in aluminum to limit light exposure.

• Acquire data on flow cytometer

FlowJo (Post-Analysis)
Utilize FlowJo software from Dr. Webber to determine percentage of cells in each phase.

Material Preparation

DNAse free RNAse-A
RNAse A comes in a powder form and may not actually be purified. In the case of the experi-
ments performed with Cell Synchronization, the RNAse A needs to be free of DNAse that would
potentially break down chromosomal DNA, and thereby confounding the flow cytometry results.

• Prepare a 10 mg/mL stock solution of RNAse A powder in 10 mM sodium acetate buffer,
pH 5.2.

• Heat to 100C (boiling) for 15 minutes, allow to cool to room temperature.

• Adjust pH to 7.4 using 0.1 volume of 1 M Tris-HCl, pH 7.4.

• Aliquot and store at -20C.

Note: If RNase A is boiled at a neutral pH, precipitation will occur. When boiled at the
lower pH, some precipitation may occur because of protein impurities that are present. When
Sigma tests the activity of RNAse A, a stock solution is prepared in water at 1 mg/ml.
Storage Instructions

• Store at RNase A at 20 C. Stock solutions stored in frozen aliquots remain active for at least
6 months.

• RNase A is a very stable enzyme and solutions have been reported to withstand temperatures
up to 100 C.
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• At 100 C, an RNase A solution is most stable between pH 2.0 and 4.5.9

• A major application for RNase A is the removal of RNA from preparations of plasmid DNA.
For this application, DNase free RNase A is used at a final concentration of 10 (g/ml).10

• Note: RNase A is stable to both heat and detergents. In addition, it adsorbs strongly to glass.
Scrupulous precautions are necessary to ensure RNase A residue does not cause artifacts in
processes requiring intact RNA.

B.1.4 Materials

• DMEM

• PBS

• Trypsin

• Eppendorf Tubes

• ICE COLD PBS

• Triton X-100

• Staining Solution: To 10 ml of 0. 1% (v/v) Triton X-100 (Sigma) in PBS (meaning 10 µl of
Triton X in 10 mL of PBS); Add 2 mg DNAse-free RNAse A (Sigma) and 0.40 ml of 500
µg/ml PI; Store the left over at -20C covering the tube with tin foil.

Stalling and Cell Cycle Characterization
Double Thymidine Block Protocol

1. Tips on the release from the first block: For better synchronization, keep cells warm during
the wash and handle only a small number of dishes at one time (at most 45 dishes or wells).

2. Culture cells in a 6-well plate until 25-30% confluency is achieved on 22mm glass slide with
2mL of DMEM included in each well

3. Add thymidine to a final concentration of 2.5 mM and incubate at 37 C for 16 h.

• Use the following formula to determine the amount of thymidine stock solution to be
added where T(mL) is the amount of thymidine stock solution to be added to Y(mL)
amount of media in the well.

• 0.0025((mg/mL))=(0.100((mg/mL)) * T(mL))/(Y(mL)+ T(mL) )

• Solving for T yields: T(mL)= ((0.0025*Y)/0.0975)

4. Wash cells twice with 0.4 mL of pre-warmed PBS or serum-free DMEM.

5. Add pre-warmed medium with serum and release cells into cell cycle at 37 C for 9 h.
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Table B.3: Phase Injections

Well Type Purpose
1 Negative No treatment
2 Block Double Thymidine Block
3 Positive Blocked, DNA added

4-6 Injected Sample Blocked, DNA, Injected

6. Add thymidine to a final concentration of 2.5 mM as explained in Step (4c) and incubate at
37C for 1416 h.

7. Wash cells twice with 3 mL of pre-warmed PBS or serum-free DMEM.

8. Release cells at 37C as in Step 4

Cell Cycle Characterization
Use the cell cycle staining protocol above to determine the results of the stalling as well

as track the cells as they progress through the cell cycle. Based upon previous research, HeLa
cells released following a double thymidine block will progress through the cycles after the hours
specified: S phase 0-4 hours, Enter G2 phase 5-6 hours, Mitosis 7-8 hours, Re-enter S Phase
14-16 hours. This data may be verified by performing the cell cycle staining procedure at various
time intervals following release from the double thymidine block.

Phase Injection

Variables will be: Voltages 3, 5, 7, 9; Cell Cycle Phase
Plates

• Utilize 4 plates per experiment run

• Repeat each plate with the same sample types as described above, producing approximately
12 samples per experiment run.

• Repeat experiment twice per voltage setting for each cell cycle phase: Phases (4) S, G2, M,
G1/G0; Voltages (4) 3, 5, 7, 9; If two trials of each combination, 32 trials are needed.

B.1.5 Reasons for Experiment Abandonment

In conjunction with an undergraduate researcher, we proposed this work and received an ORCA
grant to pursue the work. At the time, I had just begun my research into using CRISPR-Cas9
plasmids and it was proposed once we had started this work to implement CRISPR into this project,
thereby investigated when in the cell cycle cells are most likely to incorporate exogenous DNA.

The challenge with this project was about a month and a half into it, in conducting a lit-
erature search, I discovered that another group was conducting the same research and published
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while we were still in the middle of this project [307]. At that point, it was determined that other
research questions were of value and this project was abandoned.

B.2 Electrostatic Attraction of DNA

An important element of the Lance Array Nanoinjection (LAN) process is described as
electrostatically attracting DNA from solution onto a series of micron-sized lances, most com-
monly etched from silicon. This step is of particular interest because the relative factors that affect
the amount of DNA that can be accumulated onto the lance array is largely unknown. Recently,
Nick Gregory (Nick2015) demonstrated that using LAN and radio-tagged DNA strands, that ap-
proximately 50,000 DNA strands are delivered to each target cell during LAN (using a linearized
plasmid of 5551 bp at 250 ng/mL of injection solution). These findings strongly suggest that LAN
is electrically attracting the DNA onto the lances, however, these findings are not definitive. Be-
cause this step is critical to the process of introducing exogenous DNA into the cell, it is imperative
that this area of LAN is explored more completely.

B.2.1 Previous Work

In previous work done with the Single Lance Nanoinjector (SLN) [26], it was shown that
in an attraction period of 5 minutes 46 seconds, that over 32,000 DNA plasmids of 4700 bp was
accumulated onto the single lance (DNA concentration: 1-2µL of 306 ng/µL). In order to get
this outcome, +1.5 VDC was applied to the solution with the understanding that by keeping the
electrical attraction below decomposition voltage that oxidative damage cannot occur to the MEMS
device.

Unfortunately, after having a conversation with Quentin Aten about his testing, it was dis-
covered that the results of the testing making up this paper to be suspect. Dr. Aten could not
replicate the results of this paper following experimentation at Nanoinjection LLC. The problem
with previous experimentation is believed to be a result of a couple factors. First, during voltage
application to an ionic solution, the electrode immediately following the application of a voltage
collected oppositely charged ions. As these ions collect, the current in the solution diminishes
exponentially. Because the current drops off so quickly, the ability to actually pull DNA out of
the ion-rich solution is reduced significantly. Second, the use of voltages above the decomposi-
tion voltage results in electrolysis or separation of water into hydrogen and oxygen. This becomes
problematic because the bubble formation on the electrodes causes disruption to potentially ac-
cumulating DNA molecules. Therefore, a way needs to be created to construct a barrier between
the electrode and bubble formation events (particularly on the negatively charged electrode) to
diminish this effect.
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B.2.2 Hypothesis:

It is hypothesized that DNA can be attracted from an aqueous solution using current con-
trolled application to a metal electrode using DAPI as an indicator stain for the DNA (at DNA
concentrations appropriate to standard transfection protocols: 250 to 750 ng/mL of injection solu-
tion)

• If that is true, it is further hypothesized that the larger the attraction current, the greater the
amount of DNA attraction to the associated electrode.

• If that is true, it is further hypothesized that attraction can occur in a variety of solution types
(particularly biologically relevant solutions) including: PBS and DMEM.

• If that is true, it is further hypothesized that DNA transfer can occur following a successful
attraction event to a new DNA-free solution and quantified.

B.2.3 Methods

Equipment:

• Zeiss Imager A.1 Fluorescence Microscope

• Settings: Exposure time, saturation, linear brightness scaleo

• Light filter: blue

• Image capture: only at imaging times, helps reduce photo-beaching of the DAPI

• DAQ 1: LabView VI measures the current and voltage in time, helps to characterize the
behavior of the voltage as the current is maintained.

DAPI Prep (Adapted from Sigma-Aldrich Counterstaining Protocol)

Main DAPI Supply:

• Take 0.25 mL of H20 and add to the 5 mg DAPI powder inside the provided bottle. Heat
or sonication may be required and make sure that the solution is fully dissolved. (Conc: 20
mg/mL)

• Solution stored in the dark at room temperature or 4C, should be stable for 2 to 3 weeks.

Store all solutions in foil in the fridge, solution only useful for up to 3 weeks.
DAPI Dilution for Sample Testing

• Intermediate DAPI Supply: Take 50 L of Main DAPI Supply (contains 1 mg of DAPI) and
place into a 10 mL conical tube labelled 300 M Intermediate DAPI Supply; Add to the
conical tube 9.5 mL of PBS, shake the tube to mix the DAPI.
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• Sample Testing: Take 600 µL from the Intermediate DAPI Supply and add to each sample
well, which already contains 2 mL of PBS.

Controls

• Negative Control: Test in 2 mL solution (H2O, PBS, and DMEM) with no DAPI or DNA in
solution and monitor appearance without voltage application.

• Positive Control: Test in 2 mL solution (H2O, PBS, and DMEM) with DAPI and no DNA in
solution and monitor appearance with and without current application; Test in 2 mL solution
(H2O, PBS, and DMEM) with no DAPI but with DNA present in solution and monitor
appearance with and without current application.

Test Sample Procedure:

1. Place glass slip into well with the electrodes.

2. Add 2 mL of H20 to treatment sample well.

3. Add DNA to well (250 to 750 ng per mL of injection fluid, 500 to 1500 ng in 2 mL solution,
roughly 5kbp in size): Note: Nano-drop confirm the concentration of the DNA concentration

4. Add DAPI solution as outlined in the DAPI Dilution for Sample Testing: Sample Testing.

5. Set-up DAQ1 to capture voltage, current, and resistance through time.

6. Apply current control and capture images at specific time intervals.

7. Variables to consider: Current Magnitude, Duration of Current Exposure, DNA to DAPI
Concentration by verifying DNA mass added, Fluid Type, Transfer Hypothesis

B.2.4 Reasons for Experiment Abandonment

Many experiment parameters were attempted in regards to electrostatic attraction of DAPI-labelled
DNA onto tungsten tipped micro-manipulator electrodes in PBS solution with no success. Occas-
sionally, it would appear for brief moments that DAPI-stained DNA was collecting on the elec-
trodes. However, these events could not be repeated. After visiting with Dr. Quentin Aten, a
former graduate student from the lab that did similar work in regards to the single lance nanoinjec-
tion, it was noted that he too experienced similar problems and had not been able to resolve them.

In short, what appears to be the problem is that when the electrode is placed in the ionic
solution, as soon as a voltage is applied across the electrode, ions are attracted to the electrode and
quickly diminish the voltage potential of the electrode. Without the voltage potential, the DNA in
the solution is not attracted to the electrode.
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In effort to overcome this, I tried reversing the voltage across the electrode to more or
less help remove the collection of ions. This did not work to improve DAPI-DNA collection
results. Furthermore, I also tried simply increasing the voltage across the electrode. This lead to
localized electrophoresis. The resulting bubble formations helped with bulk fluid motion but failed
to improve DAPI-DNA collection on the electrode. Ultimately, this project was dropped from the
research.

B.3 Increasing Lenti-Viral Titers in Phoenix HEK cells using Lance Array Nanoinjection

Virology research often requires the production of high titers of engineered viruses. Typically,
transfection of Phoenix HEK cell lines for lenti-viral production is performed using calcium-
phosphate (Ca-Pho) transfection, achieving transfection rates of approximately 30%. From the
HEK cells that are successfully transfected, researchers are able to harvest lenti-viruses produced
by these modified HEK cells, where the goal is to have as high as possible viral counts.

In effort to achieve greater transfection rates, it is hypothesized that a non-viral transfection
method called Lance Array Nanoinjection can facilitate better transfection and expression rates
when compared to Ca-Pho in the context of modifying Phoenix HEK cells to producing lenti-
virus. Specifically, the following hypotheses are proposed in the context of comparing LAN to
Ca-Pho for Phoenix HEK cell transfection:

• LAN can transfect with greater than or equal efficiency as Ca-Pho in terms of GFP expres-
sion.

• LAN transfection efficiency will follow an injection-dose response, meaning the more times
the target cells are injected, the greater the transfection rate will be.

• LAN will reach a 10% settling time sooner than Ca-Pho because the injection process can
insert viral particles immediately into the cell whereas Ca-Pho takes a day before transfection
occurs.

• The rate at which GFP expression is measured post-treatment will correlate to the number of
infectious units, meaning the greater the transfection rate with GFP, the greater the number
of infectious units measured.

B.3.1 Reasons for Experiment Abandonment

After a series of Lance Array Nanoinjection (LAN) experiments, it was shown that the
LAN treated cells were dying in massive numbers when transfecting Phoenix HEK cells with
these Lenti-viruses. This was not an expected outcome.

It was hypothesized that the reason for the massive cell death was due to the viral particle
interaction with the HEK cells. With non-aided lenti-viral entry into the cells, part of the proteins
that are required for entry must interact with the host cell membrane. With LAN injections, that
interaction gets by-passed. It is hypothesized that because that interaction does not occur during
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Figure B.1: Fluorescent microscope image of Retinal Pigmented Epithelial cells 1 day post-LAN
with CMV/GFP plasmid

LAN treated experiments, that some capsid proteins remain intact on the Lenti-viral particles and
threaten the target HEK cells. As a last resort effort, the HEK cells induces cell death to prevent
infection.

This hypothesis was not investigated further and remains unknown still. The fact that other
projects were doing well at the time of this project and because this project was outside the scope
of the immediate NSF project, it was abandoned.

B.4 Retinal Pigmented Epithelial Cell Transfection using CMV/GFP Plasmid

One of the experiment types that was tried several times was using Lance Array Nanoinjection
to transfect hard-to-transfect cell lines using plasmids without self-promotional features. This
experiment was one of the most difficult in terms of that scope. Retinal Pigmented Epithelial
(RPE) cells are difficult to transfect with nearly any transfection method available and we sought
to transfect them by inserting a GFP with a CMV promoter.

Initially, our results were promising, showing a fairly high number of transfected cells
(roughly 20%), which was significantly higher than the < 1% results that were reported previously
in the lab. However, repeat experiments could not repeat these results and eventually was dis-
continued. The reason for failed results is not known.
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Figure B.2: Fluorescent microscope image of Retinal Pigmented Epithelial cells 3 day post-LAN
with CMV/GFP plasmid

176



www.manaraa.com

APPENDIX C. ARDUINO CODE USED FOR 3D PRINTED CELL PLATFORM LANCE
ARRAY NANOINJECTIONS

The following code was originally written by Tyler Lewis for Force Injections using a
slower stepper motor (for the entire code see Tyler’s thesis). I modified the initial sections of this
code to operate for most of the injection experimentation completed since the CRISPR-Cas9 GFP
knock-out project (shown below). It operates by causing the stepper motor to vertically travel a
total of 4 mm. The three input delays allow for three different electrical parameters to occur during
this injection process.

Nanoinjection Program
Created by Tyler Lewis Last updated Mar. 6, 2015 by John Sessions
// Distance travel int distance = 4; // Desired travel distance in mm
// Distance at which input 1 turns off double cutoffdistance = 2; // mm
// Input delay times int input1duration = 20000; // ms of constant DC int input2duration

= 20; // ms repel/pulse time int input3duration = 5000; // ms Reverse voltage, withdraw lances
// Pulsed input parameters int pulse = 1; // 0 = no, 1 = yes int periodlength = 2; // period

(ms) of pulse duration
// Time delay between each step // This controls the speed of the motor // (1000 mi-

croseconds is the minimum possible) int timedelay = 1200; // microseconds
...
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